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Scientific Knowledge on the Subject: 

Long and short-term exposure to fine PM (PM2.5) is associated with asthma 

morbidity, but little is known about the long-term effects of coarse PM (PM10-2.5) on 

asthma prevalence or morbidity.  

What This Study Adds to the Field: 

This study found that coarse PM exposure was associated with higher asthma 

prevalence and morbidity among U.S. children enrolled in Medicaid, and that this 

association was independent of fine PM exposure. This finding suggests that long-

term limits on coarse PM exposure be reconsidered. 
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This article has an online data supplement, which is accessible from this issue's 

table of content online at www.atsjournals.org 
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Abstract:  

Rationale: Short and long-term fine particulate matter (PM2.5) pollution is 

associated with asthma development and morbidity, but there is little data on the 

effects of long-term exposure to coarse PM (PM10-2.5) on respiratory health.    

Objectives: To understand the relationship between long-term fine and coarse PM 

exposure and asthma prevalence and morbidity among children.  

Methods: A semi-parametric regression model that incorporated PM2.5 and PM10 

monitor data and geographic characteristics was developed to predict two-year 

average PM2.5 and PM10-2.5 exposure during the period 2009-2010 at the zip-code 

tabulation area level. Data from 7,810,025 children aged 5-20 years enrolled in 

Medicaid from 2009-2010 were used in a log-linear regression model with 

predicted PM levels to estimate the association between PM exposure and asthma 

prevalence and morbidity, adjusting for race/ethnicity, sex, age, area-level 

urbanicity, poverty,  education, and unmeasured spatial confounding. 

Measurements and Main Results: Exposure to coarse PM was associated with 

increased asthma diagnosis prevalence (RR for 1µg/m3 increase in coarse PM level: 

1.006, 95%CI: 1.001-1.011), hospitalizations (RR: 1.023, 95%CI: 1.003-1.042), and 

emergency department (ED) visits (RR: 1.017, 95%CI: 1.001-1.033) when adjusting 

for fine PM. Fine PM exposure was more strongly associated with increased asthma 

prevalence and morbidity than coarse PM. The estimates remained elevated across 

different levels of spatial confounding adjustment. 
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Conclusions: Among children enrolled in Medicaid, exposure to higher average 

coarse PM levels is associated with increased asthma prevalence and morbidity. 

These results suggest the need for direct monitoring of coarse PM and 

reconsideration of limits on long-term average coarse PM pollution levels.   

 

Word Count: 257 

Key words: particulate matter, asthma, air pollution 

 

Abbreviations:  

PM: Particulate Matter 

EPA: Environmental Protection Agency 

ED: Emergency Department 

ZCTA: Zip-Code Tabulation Area 

PCA: principal component analysis  

GAM: Generalized additive model  

TPRS: thin-plate regression splines  

CV: Cross-validation   
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Introduction 

Asthma affects more than 7 million U.S. children, and is responsible for more 

than 3,000 deaths, 400,000 hospitalizations and 1.8 million emergency department 

(ED) visits per year in the U.S.1 Particulate matter (PM) air pollution has been 

shown repeatedly to have significant short and long-term effects on both the 

development of asthma and asthma morbidity2. To-date, most of the research has 

focused on fine particles (PM2.5), for which epidemiologic studies have now 

provided enough evidence for the Environmental Protection Agency (EPA) to 

determine that both long- and short-term exposure are likely to be causally related 

to negative respiratory health outcomes3.  

In contrast, the coarse fraction of PM (PM10-2.5) is generally thought to be less 

harmful than fine PM, both because of the particle size, which limits penetration 

deep into the lungs, and because the sources of coarse PM are thought to be less 

harmful4. However, coarse PM can deposit in the upper airways involved in 

obstructive lung diseases such as asthma and COPD, and there is emerging evidence 

that short-term coarse PM exposure may be associated with cardiovascular and 

respiratory morbidity5-7. Little is known about long-term effects of coarse PM on 

respiratory health2.  

One of the reasons for the relative lack of data about the health effects of 

coarse PM is the paucity of monitor locations that measure PM10 and PM2.5 

simultaneously.  Concentrations of coarse PM are not directly measured, but instead 

are calculated by subtracting the concentrations of directly measured PM2.5 from 

PM10 at collocated monitors. Because fewer than half of the monitoring locations 

Cop
yri

gh
t ©

 20
17

 Ameri
ca

n T
ho

rac
ic 

Soc
iet

y



measure both PM2.5 and PM10, studies that rely on observed coarse PM data from co-

located monitors are limited in geographic scope. 

Here we estimate long-term average fine and coarse PM concentrations using 

an exposure prediction model based on monitor observations and geographic data. 

We apply these predictions to health care utilization data from children enrolled in 

Medicaid across the U.S. during 2009-2010 to assess the relationship between long-

term exposure to PM and asthma morbidity and prevalence.  

 

Methods  

Participants 

Subjects were children aged 5 to 20 year old enrolled in Medicaid in the 

United States between 2009 and 2010. As previously described8, the data were 

obtained from the Research Data Assistance Center (University of Minnesota, 

Minneapolis, Minn.). Medicaid data were collected and aggregated on the state level 

and then processed by the Centers for Medicare and Medicaid into the Medicaid 

Analytic Extract (MAX). Use of the data was approved by the Johns Hopkins School 

of Medicine Institutional Review Board.  

Children were only included if they were enrolled for the full 24-month 

period. Six states were excluded from the analysis because of concerns about 

utilization data quality: Maine, which had incomplete utilization data, and 

Pennsylvania, Ohio, Idaho, Arkansas and Kansas, which all had rates of asthma care 

utilization which were either abnormally low and inconsistent with other sources of 

data9-12 (Pennsylvania, Arkansas and Ohio) or had large inconsistencies in asthma 
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care utilization between 2009 and 2010 (Idaho and Kansas). Further examination 

showed that most of the abnormally low rate of asthma care utilization reported in 

Pennsylvania was due to very low rates of asthma care utilization in the Pittsburgh 

and Philadelphia areas (0.6% and 0.3% prevalence from utilization data, 

respectively), which is not consistent with external data on asthma prevalence in 

this area (15% and 18% self-reported prevalence, from one source13).  Alaska and 

Hawaii were excluded because of the difficulty in predicting PM in the non-

contiguous states.  Because prior investigations, including our own of this Medicaid 

data, have shown that race/ethnicity is strongly associated with asthma prevalence 

and morbidity8,14, 8 states were excluded because greater than 10% of subjects had 

missing data for race/ethnicity. These states were: Colorado, Iowa, Massachusetts, 

New Jersey, Rhode Island, Vermont, Washington, and Wisconsin. 

 

PM Data 

Twenty-four hour average measurements of PM2.5 and PM10 for the period 

January 1, 2009 through December 31, 2010 were obtained from the EPA Air 

Quality System (AQS) database (US Environmental Protection Agency 2016). We 

restricted to monitors using Federal Reference Methods. For both PM2.5 and PM10, 

the annual average concentration was computed for locations with at least 28 

observations and gaps of no more than 30 days between measurements. A long-

term concentration at each PM2.5 and PM10 site for the period 2009-2010 was 

created by averaging together the 2009 and 2010 annual averages, using the value 

for a single year when one year was missing. 
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Exposure Prediction 

We developed a semi-parametric regression model to predict long-term 

average PM concentrations across the entire contiguous United States.  We built 

separate models for PM2.5 and PM10 and used the difference of predictions to 

compute PM10-2.5. By building separate models for each fraction, we can incorporate 

monitoring locations that only measure one type of PM. The mean component of the 

prediction models comprised penalized spatial splines and principal component 

analysis (PCA) scores derived from geographic variables. Generalized additive 

models (GAMs) of this form, and related approaches such as land-use regression and 

universal kriging, have been used throughout the literature to predict long-term 

average air pollution concentrations for epidemiological analyses15-19. 

Four types of publicly-available geographic data were incorporated in the 

models. Population density at the county and zip-code tabulation area (ZCTA) level 

was obtained from Census 2010 data20. Primary and secondary road network data 

were also obtained from the 2010 Census21 . Satellite measurements of impervious 

surface, which can indicate anthropogenic development, were obtained from the 

National Land Cover Database22. Data on point source emissions were obtained 

from the 2008 National Emission Inventory23 .  Within circular buffers of varying 

radii, we computed the sum of road lengths, the sum of PM2.5 emissions, the sum of 

PM10 emissions, and the percent of impervious surface.  PCA was then performed on 

these buffer measures and log-transformed county- and ZCTA-level population 

density to obtain a set of 5 PCA scores. This procedure allows information from 
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multiple buffers for each covariate to be included, without requiring a manual 

variable selection procedure. 

The PCA scores were combined with thin-plate regression splines (TPRS)24 

as the mean component of the GAM. The model was fit via the mgcv package in R, 

and the coefficients for the TPRS were penalized using a generalized cross-

validation criterion25. The number of PCA scores (from between 1 and 5) and 

degrees of freedom (df) for the splines prior to penalization (from 25 to 400) were 

selected via ten-fold cross-validation (CV). The performance of CV models was 

assessed via mean-squared error-based R2 (CV R2), which incorporates precision 

and bias26,27.  

Predictions from the fitted models were made at 10 randomly selected 

locations within each ZCTA. The average of the PM2.5 predictions was taken as the 

ZCTA-level predicted exposure value. The average of the difference between the 

PM10 and PM2.5 predictions was taken as the ZCTA-level PM10-2.5 predicted exposure. 

 

Outcome 

Asthma hospitalizations were defined as hospitalizations with a primary 

diagnosis of an asthma-related condition (ICD International Classification of 

Diseases, Ninth Revision diagnosis (ICD-9) code of an asthma-related condition 

([493.x], Supplemental Table S1). Emergency department (ED) visits were defined 

as outpatient visits occurring in hospital-based EDs with a primary or secondary 

diagnosis code of an asthma-related condition. Prevalent diagnosed asthma was 

defined as having at least one asthma related outpatient visit (defined as an 
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outpatient visit with a primary or secondary diagnosis code of an asthma-related 

condition), ED visit or hospitalization during the 24-month period.  

 

Analysis 

To account for area-level confounding due to socio-economic status and 

other factors, we obtained data on county-level urbanicity and ZCTA-level poverty 

and education. Urbanicity was quantified using the six-level scale developed by the 

National Center for Health Statistics, which ranges from “large central metropolitan” 

counties to rural, “non-core” counties28. The percent of families below the poverty 

level and the percent of adults with highest education level of high school or below 

was obtained from the U.S. Census Bureau29,30. To allow for possible non-linear 

relationships, we represented poverty and education in the models using natural 

splines with four degrees of freedom. 

We estimated associations between long-term PM exposure and asthma 

prevalence and morbidity using generalized estimating equations with a logarithmic 

link function and clustering within ZCTA. For the prevalence analysis, the number of 

asthmatics was the outcome variable and an offset was included for the total 

number of children enrolled in Medicaid. Separate morbidity models were fit for 

hospital admissions and ED visits, with the number of events included as the 

outcome variable and number of person-months at risk, equivalent to 24 months 

times the number of enrollees, included via offset. We fit models that included 

additive terms for both fractions of PM, as well as models that included each fraction 

separately. The models were adjusted for the individual variables age category (5-8 
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years, 9-11, 12-14, 15-17, 18-20), sex (male or female), and race/ethnicity (Asian, 

black, Hispanic, white, or other) and the area-level variables of urbanicity, poverty 

and its interaction with urbanicity, education, and state. The models further 

included an unpenalized TPRS with 15 degrees of freedom to account for 

unmeasured, large-scale spatial differences across the country.   

 

Sensitivity analyses 

We considered the sensitivity to the spatial confounding adjustment by 

fitting models without spatial splines and with TPRS with 100 degrees of freedom, 

which approximately accounts for medium-scale spatial differences within states. 

Additionally, we explored restricting the cohort to persons 11 years of age or 

younger and examined including adjustment for estimated county-level adult 

smoking prevalence31. 

 

 

Results 

Exposure assessment 

There were 860 PM2.5 monitors and 581 PM10 monitors with data for the 

2009-2010 period that met inclusion criteria, corresponding to 834 and 518 distinct 

ZCTAs, respectively. The mean long-term average concentration at monitor 

locations was 9.4 µg/m3 and 18.7 µg/m3 for PM2.5 and PM10, respectively. The 

models with the best CV performance included 4 PCA scores and 350 df TPRS for 

PM2.5 and 4 PCA scores and 250 df TPRS for PM10. The corresponding CV R2 values 
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were 0.75 (root mean squared error [RMSE] 1.13 µg/m3) and 0.51 (RMSE 4.85 

µg/m3), respectively. Scatterplots of CV predictions and monitor observations are 

provided in Supplemental Material Figure S1. Prediction model accuracy was 

generally better in the eastern United States (Supplemental Material Figure S2). 

Maps of the predicted values of PM2.5 and PM10, and the derived PM10-2.5, aggregated 

by county for presentation, are shown in Figure 1. The correlation between PM2.5 

and PM10 predictions was similar to correlation between observations at collocated 

monitors (Supplemental Material Table S2). The mean (SD) predicted ZCTA-average 

concentration across all 48 contiguous states was 8.44 µg/m3 (2.01) for PM2.5 and 

6.87 µg/m3 (2.89) for PM10-2.5. 

Characteristics of the cohort   

7,810,025 subjects were included in the analysis. Demographics of included 

subjects are in Table 1. The overall prevalence of asthma was estimated to be 

12.8%. On average, there were 2 hospitalizations and 32 emergency department 

visits per 1000 person years, and these rates were higher among children ages 5 to 

11 (Supplemental Material Table S2). As can be seen from Figure 2, there is 

substantial variation in asthma prevalence and morbidity throughout the U.S. 

 

Associations between predicted PM and asthma diagnosis prevalence 

An average increase of 1µg/m3 predicted PM2.5 was associated with a 2.3% 

increase in the prevalence of diagnosed asthma (RR: 1.023, 95% CI: 1.014-1.031, 

p<0.001), while an increase of 1ug/m3 predicted PM10-2.5 was associated with a 

1.1% increase in asthma prevalence (RR: 1.011, 95% CI: 1.007-1.015, p<0.001). 
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These relationships were robust to inclusion of the other pollutant in the model; the 

adjusted relative rates were 1.018 for PM2.5  (95%CI: 1.008-1.027, p<0.001) and 

1.006 for PM10-2.5 (95% CI: 1.001-1.011, p=0.01). (Figure 3) 

 

Associations between predicted PM2.5 and PM10-2.5 and asthma morbidity 

An average increase of 1 µg/m3 predicted PM2.5  was associated with a 7.2% 

increase in asthma hospitalizations (RR: 1.072, 95% CI: 1.042-1.102, p<0.001) and a 

4.2% increase in asthma ED visits (RR: 1.042, 95% CI: 1.019-1.066, p<0.001) (Figure 

3).  An average increase of 1 µg/m3 PM10-2.5 was associated with a 3.6% increase in 

asthma hospitalizations (RR: 1.036, 95% CI: 1.018-1.053, p<0.001) and 2.6% 

increase in ED visits (RR: 1.026, 95% CI: 1.015-1.038, p<0.001).   

In a model that included both PM2.5  and PM10-2.5, associations between 

asthma morbidity and both fractions of PM were somewhat attenuated, but 

remained statistically significant. After adjustment, PM2.5  was associated with a RR 

of 1.048 (95% CI: 1.016-1.081, p=0.003) for hospitalizations and 1.030 (95% CI: 

1.001-1.060, p=0.040) for ED visits, and PM10-2.5 with a RR of 1.023 (95% CI: 1.003-

1.042, p=0.02) for hospitalizations and 1.017 (95% CI: 1.001-1.033, p=0.040) for ED 

visits. (Figure 3)  

 

Sensitivity analyses 

Associations between both pollutants and asthma morbidity and prevalence 

were sensitive to the scale of spatial adjustment (Supplemental Material, Table 

S4), but remained positive for all measures and ranges of spatial adjustment.  
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 When we restricted to those age 11 years and younger, all observed 

associations between both pollutants and asthma morbidity and prevalence were 

stronger (Supplemental Material, Table S5).  

 When county-level smoking prevalence was included, the estimated 

associations were slightly stronger (Supplemental Material, Table S6). 

 

Discussion 

In this analysis of children across the U.S. enrolled in Medicaid, we found that 

it is not only fine PM (PM2.5), but also coarse PM (PM10-2.5) that is associated with 

long-term effects on asthma diagnosis prevalence and morbidity. For each 1 µg/m3 

increase in average coarse PM there was a 0.6% increase in asthma prevalence, 

2.3% more asthma hospitalizations and 1.7% more ED visits. These associations are 

adjusted for exposure to fine PM and suggest that there is an effect of coarse PM on 

asthma-related outcomes that is independent of fine PM. 

Our findings fill a key gap in the evidence that long-term coarse PM pollution 

negatively affects respiratory heath in children. The most recent provisional 

Integrated Science Assessment (ISA) by the EPA in found that there was insufficient 

evidence to conclude that coarse PM exposure causes negative health effects, and 

the 2012 rule making did not include specific limits on coarse PM, but only provided 

daily PM10 limits3,32. However, recent data, including our findings here, suggest that 

coarse PM may have both short and long-term effects on human health, with 

potentially stronger effects on respiratory health32. Short term effects have been 

demonstrated in several time series studies in a variety of communities that have 
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linked daily changes in coarse PM to mortality33-35, hospitalizations2,5,6,36, cardiac 

events37 and asthma admissions38. Evidence for long-term effects is much sparser. 

The few studies published on chronic coarse PM exposure and cardiovascular 

disease or mortality have failed to find an association39-42. In contrast, long-term 

coarse PM exposure was associated with decreased lung function and increased 

bronchitic symptoms in Southern Californian children43,44 and with bronchitis in 

children in four Chinese cities45. This study expands those findings in a national-

level analysis of long-term coarse PM, finding associations with both prevalent 

asthma and asthma morbidity.  

The composition of coarse PM and fine PM are distinct, reflecting different 

pollution sources. Fine PM is typically generated by combustion or through 

reactions in the atmosphere, while coarse PM is commonly formed by grinding and 

resuspension of solid materials, and thus includes crustal elements and organic 

debris from soil in rural areas, as well as heavy metals and roadway-derived 

particles (e.g. from brake wear) in urban areas32,46,47. Roadway and crustal sources 

impact coarse PM composition in most areas, although the precise elemental profile 

can vary between cities47,48. Differences in composition could cause regional 

heterogeneity in the association between PM and asthma morbidity. 

The biologic rationale for negative pulmonary effects of coarse PM is strong. 

Notwithstanding compositional differences, controlled exposure of healthy adult 

volunteers to coarse PM leads to systemic and pulmonary inflammation similar in 

magnitude to that of fine PM49-51 and may lead to skewing of the immune system 

that predisposes to allergy52.  
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That our findings were stronger for children 11 years of age and younger 

might be expected, as it is at younger ages that asthma develops. In addition, 

younger children may be more susceptible to outdoor air-pollution, both for biologic 

reasons and because they spend more time outdoors2. Finally, because younger 

children have had less time to change residences than older children, exposure over 

the two years studied may correlate more closely with lifetime exposure in younger 

than older children.  

Our finding that long-term higher average fine PM exposure was associated 

with asthma prevalence and morbidity is consistent with a large body of literature 

showing long-term respiratory effects of fine PM exposure in children3. Data from 

regional and national studies have shown higher rates of asthma diagnosis, asthma 

symptoms, respiratory infections, and hay fever with higher fine PM exposure53-62. 

Even more importantly, when fine PM concentrations have dropped, respiratory 

symptoms and infections in children have also decreased63,64. Although less novel 

than the coarse PM analysis, our findings emphasize that despite overall decreases 

in fine PM over the past decades with the Clean Air Act65, we still see respiratory 

morbidity attributed to fine PM exposure among children.     

In general, the asthma diagnosis prevalence found here is somewhat higher 

than reported in national surveys (for example, the estimate of asthma prevalence 

in 2010 by the CDC based on self-report was 9.4%66 compared to our prevalence of 

12.8%). This is not surprising, both because asthma prevalence is higher in low-

income children14, such as those enrolled in Medicaid, and because not all families 

who have received a visit diagnosis of asthma may consider their child to have 

Cop
yri

gh
t ©

 20
17

 Ameri
ca

n T
ho

rac
ic 

Soc
iet

y



asthma. Demographic risk factors for asthma, including black race/ethnicity and 

male sex are consistent between the Medicaid population and national surveys, as 

detailed in previous analyses of similar data8.   

One challenge of estimating health effects of long-term exposure to coarse 

PM is the limited amount of monitoring data available. Because federal monitors do 

not directly assess PM10-2.5, measurement of this fraction requires collocated PM2.5 

and PM10 monitors. Such monitors are rare, as the majority of PM monitoring 

locations only measure one of PM2.5 and PM10. Exposure prediction models based on 

monitoring data are widely used to estimate long-term PM exposures for air 

pollution epidemiology cohorts17,19,67,68 . Such models allow estimation of health 

effects of pollutants in areas where there is not direct monitoring of both pollutants 

simultaneously. The accuracy of our prediction models (CV R2 of 0.75 and 0.51 for 

PM2.5 and PM10, respectively) is similar to spatial accuracy reported for exposure 

prediction models in other studies across the United States, which ranged from 0.62 

to 0.88 for PM2.5 19,67,69 and 0.55 to 0.69  for PM10 18,70. PM10, due to its greater mass, 

has shorter residence times in the air than PM2.5. This makes it more spatially 

heterogeneous than PM2.5  and more difficult to predict. Predictive accuracy for PM10 

is also impacted by the decline in the number of operational PM10 monitors since the 

widespread PM2.5 monitoring began in 1999, which is likely why the prediction 

accuracy of our PM10 model is somewhat less than reported in earlier studies. 

Limitations to our analysis include the inherent limitations of using claims 

data to measure disease activity. Access to health care, health behaviors such as 

compliance with medications, and individual health choices can all influence 
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whether an asthma exacerbation leads to an ED visit or hospitalization, although 

one of the benefits of using Medicaid data is that all subjects should be able to access 

all types of care. Miscoding or missing data could add bias; we excluded a number of 

states where important data was missing (such as for race) or where utilization data 

showed very improbable rates of asthma utilization, but we cannot exclude the 

possibility that other data was flawed. We were unable to adjust for individual level 

economic status, household tobacco exposure or other individual level factors that 

could confound the relationship between pollution exposure and asthma, although 

we did adjust for race and zip-code level education and poverty, and did sensitivity 

analyses adjusting for county-level tobacco exposure. Our results are limited by the 

assumption of a linear exposure-response relationship, although in sensitivity 

analyses we did not find evidence that the linearity assumption was violated. 

Furthermore, while non-linearity of exposureresponse is of great interest across 

large exposure ranges, the limited range of exposures in the current data make it 

difficult to detect. The prediction of exposures introduces correlated measurement 

error in point estimates71,72, and calculation of coarse PM as the difference of PM10 

and PM2.5 predictions can introduce additional measurement error73. However,  for 

linear health models with a single pollutant, analytic measurement error corrections 

have identified relatively small amounts of bias15,74. Differences in the spatial 

distribution of monitors and cohort subjects has been shown to introduce bias in 

some settings72,75, but its overall impact is unclear76,77. Finally, our analysis may not 

be generalizable to non-low income children, but our focus on this population may 
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be strength, as there is evidence that low-income children are particularly 

vulnerable to the effects of pollution2. 

Our findings were sensitive to the extent of spatial adjustment. The long-

range spatial adjustment chosen for our primary analysis can account for 

unmeasured differences that occur on a spatial scale similar to the differences 

between states, but in a smooth manner not restricted by state boundaries. Our 

choice of adjustment scale also preserves smaller-scale variation in the PM 

exposure, which provides informative contrasts between ZCTAs that allow us to 

estimate the association of interest. The finer scale adjustment in the sensitivity 

analysis effectively removes a large proportion of the spatial variability in the 

exposure surfaces. For predicted Coarse PM, which was more spatially smooth than 

predicted PM2.5 (Figure 1), this reduces power and results in attenuated point 

estimates. In contrast, predicted PM2.5 had smaller scale contrasts that were not 

removed by the greater adjustment and the estimates were larger in the sensitivity 

analysis. Nonetheless, the estimates for exposure to both fractions of PM were in the 

same direction for all levels of adjustment. Further research should consider the 

application of automated procedures for selecting the extent of spatial confounding 

adjustment. Algorithms such as minimizing quasi-likelihood information criteria78, 

which target the modeled outcome, may introduce additional bias and are not 

necessarily appropriate79,80. 

The sensitivity of results to adjustment for unmeasured spatial confounding 

and additional pollutants merits further investigation in future research. This 

includes considering other pollutants, such as ozone, that have been associated with 

Cop
yri

gh
t ©

 20
17

 Ameri
ca

n T
ho

rac
ic 

Soc
iet

y



asthma morbidity81. Ozone in particular can present challenges for the exposure 

modeling framework since there is limited year-round measurements. Additional 

avenues of further inquiry are possible non-linearity of the exposure-response 

relationship and spatial heterogeneity of the effect due to compositional differences 

in coarse PM.  

 

Conclusion:  

Among children enrolled in Medicaid in the U.S. between 2009 and 2010, we 

found that long-term exposure to coarse PM was independently associated with 

higher rates of prevalent asthma, asthma hospitalizations and asthma ED visits. This 

first ever analysis of the long-term effects of coarse PM on asthma in a nation-wide 

sample of U.S. children provides evidence supporting the harmful effects of coarse 

PM on respiratory health. Our results suggest that direct monitoring of coarse PM 

may need to be implemented and that long-term coarse PM standards should be 

reconsidered.   

  

Cop
yri

gh
t ©

 20
17

 Ameri
ca

n T
ho

rac
ic 

Soc
iet

y



Table 1. Demographics of study cohort. 

 
Full Cohort 

(n=7,810,025) 
Characteristic n % 

Age   

5-8 years 2,154,581 28 
9-11 years 1,944,164 25 
12-14 years 1,724,497 22 
15-17 years 1,567,168 20 
18-20 years 419,615 5 

Sex   
Female 3,821,081 49 
Male 3,988,944 51 

Race/Ethnicity   
Asian 198,149 3 
Black 2,292,236 29 
Hispanic 1,771,789 23 
White 2,589,294 33 
Other 958,557 12 

Urbanicity   
Large 
central 
metro 

2,973,197 38 

Large fringe 
metro 1,280,101 16 

Medium 
metro 1,583,297 20 

Small metro 679,014 9 
Micropolitan 721,913 9 
Non-core 572,503 7 

Prevalent 
Asthma 996,843 12.8 

 

Table 2. Summary of Asthma Events 

 Full Cohort 

Event Type Count Rate per 1000  
person-years 

Hospital Admissions 31,122 2.0 
ED Visits 492,730 31.5 

Cop
yri

gh
t ©

 20
17

 Ameri
ca

n T
ho

rac
ic 

Soc
iet

y



Figure Legends:  

Figure 1. Predicted average PM2.5 (1A), PM10 (1B) and PM10-2.5(1C) for the period 

2009-2010 across the contiguous United States. Dots represent monitor locations.  

Figure 2. Asthma prevalence (2A), Emergency Department (ED) visits (2B) and 

Hospitalizations (2C) by county among children enrolled in Medicaid in the U.S. Data 

smoothed to account for variation in the number of Medicaid enrollees.  

Figure 3. Estimated ratios of asthma prevalence and rates of asthma morbidity 

associated with a 1 µg/m3 difference in PM2.5 or PM10-2.5.  Single pollutant: not 

adjusted for PM2.5 or PM10-2.5, respectively. Adjusted for Other Pollutant: model 

including both PM2.5 and PM10-2.5.  
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