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Scientific Knowledge of the Subject: 

Certain outdoor air pollutants can trigger asthma exacerbations. To advance understanding of the 

relationships between ambient air pollutant concentrations and asthma exacerbations among 

children, further characterization of the dose-response and pollutant lag effects are needed, as are 

investigations of pollutant species beyond the commonly measured criteria pollutants. 

 

What this Study Adds to the Field:  

In our large, population-based study we observed that both ozone and primary pollutants from 

traffic sources independently contributed to the burden of emergency department visits for 

pediatric asthma. These associations tended to be of the highest magnitude for concentrations on 

the day of the emergency department visit and were present at relatively low ambient 

concentrations. 

 

This article has an online data supplement, which is accessible from this issue’s table of content 

online at www.atsjournals.org 
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ABSTRACT   

Rationale: Certain outdoor air pollutants cause asthma exacerbations in children. To advance 

understanding of these relationships, further characterization of the dose-response and pollutant 

lag effects are needed, as are investigations of pollutant species beyond the commonly measured 

criteria pollutants. 

 

Objectives: Investigate short-term associations between ambient air pollutant concentrations and 

emergency department visits for pediatric asthma. 

 

Methods: Daily counts of emergency department visits for asthma or wheeze among children age 

5–17 were collected from 41 Metropolitan Atlanta hospitals during 1993–2004 (n = 91,386 

visits). Ambient concentrations of gaseous pollutants and speciated particulate matter were 

available from stationary monitors during this time period. Rate ratios for the warm season 

(May–October) and cold season (November–April) were estimated using Poisson generalized 

linear models in the framework of a case-crossover analysis. 

 

Measurements and Main Results:  

Both ozone and primary pollutants from traffic sources were associated with emergency 

department visits for asthma or wheeze; evidence for independent effects of ozone and primary 

pollutants from traffic sources were observed in multipollutant models. These associations 
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tended to be of the highest magnitude for concentrations on the day of the emergency department 

visit and were present at relatively low ambient concentrations. 

 

Conclusions: Even at relatively low ambient concentrations, ozone and primary pollutants from 

traffic sources independently contributed to the burden of emergency department visits for 

pediatric asthma. 

 

Abstract word count: 217 

Key words: Ambient Particulate Matter, Asthma, Minors, Ozone 
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INTRODUCTION 

A broad literature supports associations between ambient air pollutant concentrations and asthma 

exacerbations (1-3). Children are thought to be particularly susceptible to ambient air pollutants, 

because their lungs and immune systems are not fully developed; they breathe more air per unit 

body weight and are typically more active than adults; and their peripheral airways are 

anatomically smaller than adults so that inflammation results in proportionally greater airway 

obstruction (4-6). To help advance understanding of the relationships between ambient air 

pollutant concentrations and asthma exacerbations in children, further characterization of the 

dose-response and pollutant lag effects are needed, as are investigations of pollutant species 

beyond the commonly measured urban air pollutants (3, 7). Further investigation of pollutant 

mixtures and effect modification may also provide insights (8, 9); for example, there have been 

reports of stronger pollution effects during the warm season (10-15), even though pediatric 

asthma rates peak during the cold season (16). To lessen concerns about uncontrolled 

confounding, aggressive control for variables such as meteorology and seasonal asthma trends is 

required. 

 

In the present study, we analyzed data from SOPHIA (Study of Particles and Health in Atlanta) 

(14, 17-21), one of the largest single-city time-series studies of the health effects of urban air 

pollutants, to investigate short-term associations between ambient air pollutant concentrations 

and pediatric emergency department visits for asthma or wheeze in metropolitan Atlanta, USA, 

Page 4 of 34



5 

 

during 1993–2004. Our study takes advantage of daily measurements of components of 

particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5), a resource not typically 

available to investigators, which enables us to distinguish among the various compounds that 

comprise PM2.5. We investigated effect modification by season and potential confounding by 

ambient pollen concentrations and upper respiratory infections, because it is well known that 

these factors can trigger asthma exacerbations (9). The extent to which ambient pollen 

concentrations and circulating respiratory viruses confound associations between air pollutant 

concentrations and asthma exacerbations depends on the nature of the associations between short 

term changes in these risk factors and changes in air pollutant concentrations. We also present 

several characterizations of dose-response relationships, descriptions of pollution lag effects, and 

results from multipollutant models and models of pollutant interactions. Some of the results from 

this study have been previously reported in the form of an abstract (22). 

 

METHODS 

We obtained data on emergency department visits from metropolitan Atlanta hospitals during 

1993–2004 (18). Using the International Classification of Diseases, 9
th

 Revision, we defined 

emergency department visits for pediatric asthma as all visits with a code for asthma (493.0–

493.9) or wheeze (786.09 before October 1, 1998; 786.07 after October 1, 1998) that did not 

have a code for an external injury or poisoning (E800–E999) among children age 5 to 17 years (n 

= 91,386). We also identified emergency department visits for acute respiratory infections (codes 

460.0–466.0) that did not have a code for asthma or wheeze among children age 5 to 17 years (n 

= 154,300). 
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Daily concentrations of ambient 1-hour maximum carbon monoxide, nitrogen dioxide, and sulfur 

dioxide; 8-hour maximum ozone; and 24-hour average particulate matter less than 10 µm in 

diameter (PM10), coarse particles between 2.5 and 10 µm in diameter (PM10-2.5), PM2.5, and the 

PM2.5 components sulfate, elemental carbon, organic carbon, and water-soluble metals 

(comprised of water-soluble chromium, copper, iron, manganese, nickel, and vanadium) were 

obtained from several networks of ambient monitors (14, 21, 23). These pollutants reflect many 

of the predominant sources of air pollution in Atlanta (24-26). Measurement of PM10-2.5, PM2.5, 

and the PM2.5 components began in August, 1998. Daily ambient airborne pollen concentrations 

were obtained from the Atlanta Allergy and Asthma Clinic.  

 

In the framework of a case-crossover analysis, associations between ambient air pollutant 

concentrations and pediatric asthma emergency department visits were estimated via Poisson 

generalized linear models that accounted for overdispersion (27). The dependent variable was the 

hospital-specific daily count of pediatric asthma visits. In most analyses, the 3-day moving 

average pollutant concentration (the average of concentrations today [lag 0], yesterday [lag 1], 

and two days ago [lag 2]) was modeled linearly (14). To further describe associations we 

examined the 3-day moving average using quintiles, the 3-day moving average using a loess 

smoother (from a generalized additive model) (28, 29), and the 8-day moving average 

concentration (lags 0 through 7) constrained using a third degree polynomial (30). For all 

analyses we created separate warm season (May–October) and cold season (November–April) 

models. All models included a cubic polynomial for day-of-season, the moving average of dew 

point (lags 0-2), and the moving average of minimum temperature (lags 1 and 2); indicator 

variables for year, month, day of week, hospital, and lag 0 maximum temperature (for each 
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degree of Celsius); and interactions between month and year, month and lag 0 maximum 

temperature, and month and day of week. Additional terms for dew point and minimum 

temperature were included in distributed lag models to coincide with the pollutant averaging 

period. We investigated confounding by upper respiratory infections (the logarithm of the daily 

count of upper respiratory infections) and pollen concentrations (various lags of ambient 

ragweed, pine, oak, juniper, grass, and birch concentrations) by assessing whether their inclusion 

changed the pollutant regression coefficient estimates. We examined the sensitivity of our results 

to alternative model specifications and evaluated model misspecification by estimating 

associations with pollutant concentrations on the day after the emergency department visit. The 

sensitivity analyses include results from time-series models, which are based on models 

analogous to those we presented in earlier publications (14, 18, 20, 25, 31); “traditional” case-

crossover models that include the three-way interactions between year, month, and day-of-week; 

traditional case-crossover models with bi-monthly (rather than monthly) time windows to further 

account for temporal trends; and our primary analytic approach without control for the daily 

count of emergency department visits for (non-asthma) respiratory infections. Generalized 

additive models were implemented using R 2.8.1; all other analyses were performed using SAS 

9.2. 

 

 

RESULTS 

Mean counts of emergency department visits for asthma or wheeze among children age 5-17 

years were 18.9/day during the warm season (May–October) and 22.8/day during the cold season 

(November–April). The seasonal difference in upper respiratory infections was more 
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pronounced, with mean counts of 21.5/day during the warm season and 34.6/day during the cold 

season. Descriptive statistics for ambient air pollutant concentrations and maximum temperature 

are shown in Table 1. All pollutants had some seasonal variability, although the mean 

concentrations of nitrogen dioxide, carbon monoxide, and PM2.5 elemental carbon (all markers of 

pollution from combustion engines) were similar between the warm and cold season. 

 

Rate ratio estimates for associations between ambient air pollutant concentrations and pediatric 

asthma emergency department visits were similar regardless of whether pollen concentrations 

were included in the model as covariates; we examined various lags of pollen concentrations 

both continuously and using indicator variables for the top 5% and 10% of days. Therefore, 

covariates for pollen were not included in our final regression models. Results from our primary 

analysis, with pollutant concentrations characterized as three-day moving averages and rate 

ratios corresponding to interquartile range changes in pollutant concentrations, are presented in 

Table 2. Models for 11 pollutants were created for each season, and we observed 10 significant 

positive associations (p < 0.05) during the warm season and 1 during the cold season. Further 

examination of dose-response relationships included season-specific rate ratios for pollutant 

concentration quintiles, presented in Table 3, and loess dose-response curves for the 10 

statistically significant warm season associations from Table 2, which are presented in Figure 1. 

Ozone was strongly associated with emergency department visits for pediatric asthma during the 

summer; the cold season ozone association was elevated but not significant. Within the cold 

season, we observed evidence for an effect during the more temperate months (November, 

March, and April) and no evidence for an effect during the coldest three months (December, 

January, and February) (see Table 2 footnote). As shown by both the quintile analysis and the 
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loess dose-response curves, evidence for a dose-response relationship with ozone was present at 

concentrations as low as 30 parts per billion. Several markers of pollution from combustion 

engines (carbon monoxide, nitrogen dioxide, PM2.5 elemental carbon, and PM2.5 water-soluble 

metals) were associated with emergency department visits for pediatric asthma during the warm 

season, as were sulfur dioxide, PM10, PM2.5, and PM2.5 sulfate (a secondary pollutant derived 

largely from coal burning). PM10-2.5 was associated with pediatric asthma emergency department 

visits during the cold season; the lower bound confidence interval for the PM10-2.5 association 

was very close to 1.0, although the point estimates for PM10-2.5 were elevated during both 

seasons. 

 

Figure 2 displays rate ratio estimates for day-specific lags (lags 0-7) for associations between 

ambient air pollutant concentrations and pediatric asthma emergency department visits for the 10 

statistically significant warm season associations from Table 2. The rate ratio and confidence 

interval summarizing the overall eight-day association are also presented for each pollutant. For 

7 of the 10 associations, the lag-specific rate ratio of the highest magnitude was lag 0 (the 

pollutant concentration on the day of the emergency department visit). For the other 3 

associations (PM10, PM2.5 elemental carbon, and PM2.5 water-soluble metals), the lag-specific 

rate ratios were more uniformly distributed over the 8-day period. For all pollutants the 

confidence intervals are widest at lag 0, because the shape of the dose-response was constrained 

to follow a cubic polynomial (over lags 0-13), and the uncertainty of the estimates is greatest at 

the boundaries.  
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We created multipollutant models, including several two-pollutant models that paired ozone with 

another pollutant representing a particular source. A table of partial correlations between the 

various pollutants is available in the online data supplement. Warm season two-pollutant models 

are presented in Figure 3. The association between ozone and asthma emergency department 

visits observed in the single pollutant models persisted across the various two-pollutant models, 

and although the point estimates were attenuated, we observed evidence for an effect of primary 

traffic pollutants on asthma exacerbations independent of the effect of ozone. Carbon monoxide 

showed the strongest association of the three markers of pollution from traffic sources examined 

in two-pollutant models. Although significant associations were observed with warm season 

PM2.5 sulfate and cold season PM10-2.5 in single-pollutant models, these associations were not 

present in the two-pollutant models. We also explored two-pollutant models that allowed for 

interactions between ozone and each of the other pollutants; however, we did not observe 

evidence suggesting interaction in these models (results not shown). 

 

We included the logarithm of the daily count of upper respiratory infections as an additional 

covariate in all of our models. As presented in Table 4, inclusion of this covariate tended to 

attenuate the estimated rate ratios, particularly during the warm season. Results from several 

alternative statistical models are also presented in Table 4. Broadly, these models supported the 

conclusions from our primary single-pollutant models. Asthma emergency department visits 

were associated with ambient ozone concentrations and with several traffic-related primary 

pollutants and PM2.5 sulfate concentrations during the warm season and with PM10-2.5 during the 

cold season. Table 4 also presents associations between lag -1 (tomorrow’s) pollutant 

concentrations and pediatric asthma emergency department visits for the primary model 
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(controlling for the 3-day average concentration on lags 0, 1, and 2). We used these estimates, 

which were generally compatible with the null, as a diagnostic tool to assess model 

misspecification; a well-specified model should have a rate ratio estimate close to the null value 

for the lag -1 pollutant concentration.  

 

DISCUSSION 

In our large study we analyzed over 90,000 emergency department visits for pediatric asthma in 

relation to ambient air pollutant concentrations. We controlled tightly for meteorology and 

seasonal asthma trends, and we observed several positive, statistically significant associations 

between ambient air pollutant concentrations and the rate of pediatric asthma emergency 

department visits in Atlanta. Ozone was associated with emergency department visits for asthma 

during the warm season and during the temperate cold season months (November, March, and 

April). We also observed associations with several traffic-related primary pollutants during the 

warm season. These pollutants have been found to cause asthma exacerbations and airway 

inflammation in observational and experimental studies (32-36); as supported by both the 

quintile analysis and the smooth estimates of dose-response, we observed evidence that 

associations were present at relatively low ambient concentrations. Further, results from two-

pollutant models support the conclusion that ambient concentrations of both ozone and traffic-

related primary pollutants independently contribute to the burden of asthma exacerbations. 

Among the three markers of primary traffic pollution that we investigated in two-pollutant 

models, the rate ratio of the highest magnitude was for carbon monoxide. Since levels of carbon 

monoxide present in ambient air do not pose appreciable health risks, carbon monoxide 

concentrations are likely a surrogate for other pollutants emitted from combustion sources more 
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plausibly linked to asthma. Estimates from distributed lag models suggested there were both 

immediate and lagged effects for these pollutants, with the association of highest magnitude 

tending to occur on the day of the emergency department visit.  

 

We also observed associations with lag 0-2 average concentrations of warm season sulfur 

dioxide, warm season PM2.5 sulfate, warm season PM2.5 organic carbon, and cold season coarse 

particles (PM10-2.5). None of these warm season results were significant in two-pollutant models 

that also contained lag 0-2 ozone concentrations; however, many of the lag-specific point 

estimates (from the distributed lag models) were positive at lag 3 and longer, thereby raising the 

possibility that some pollutants might have shown effects had we created multipollutant models 

that spanned longer lag periods. We are particularly suspicious of the sulfur dioxide result, 

because local plume touchdowns strongly impact measured sulfur dioxide concentrations, and 

consequently it is challenging to develop a daily sulfur dioxide metric that could be considered 

representative of the urban airshed based on measurements from only 5 monitoring stations. 

Further, in previous epidemiological and experimental studies, ambient concentrations of sulfur 

dioxide and PM2.5 sulfate have not been consistently associated with impaired pediatric 

respiratory function (6, 37, 38). Respiratory function decline and increased risks of asthma 

exacerbation associated with ambient PM10-2.5 and PM2.5 organic carbon concentrations have 

been reported in previous studies (39-42), although there have been relatively few investigations 

of these pollutants compared to the body of work on PM10 and PM2.5. Both PM10-2.5 and PM2.5 

organic carbon are comprised of several different compounds, with PM10-2.5  concentrations in 

Atlanta being largely comprised of metal oxides and crustal material (43), and PM2.5 organic 

carbon consisting of mixture of compounds of both primary and secondary origin (26, 44, 45). 
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Our tendency to find stronger associations during the warm season is consistent with previous 

findings (10-15), and although we are unclear about the underlying mechanism for these 

apparent seasonal differences, it may simply be that during the warm season a greater proportion 

of asthma exacerbations are caused by air pollution. Rates of emergency department visits for 

pediatric asthma increase by 60% during the cold season; this increase is largely attributable to 

exacerbations triggered by viral infections. If the additive effect of air pollution is similar year-

round, then the attributable fraction (and, correspondingly, the rate ratio) will appear higher 

during the warm season, because there are fewer competing causes of asthma exacerbations 

during the warm season. Alternatively, it may be that children actually respond more severely to 

air pollutants during warmer temperatures, perhaps because of some unidentified synergism 

between the pollutant and a meteorological or physical factor. Additional contributions to the 

observed seasonal differences may include non-linear dose-response functions (e.g., air pollutant 

concentrations typical during warmer months may be on a steeper part of the dose-response 

curve) and behavior differences that impact personal pollutant exposures. For example, during 

the summer children are more likely to play outside, which may lead to a higher correlation 

between measured ambient concentrations and personal exposures, and consequently result in 

higher estimated effects of ambient pollutants. 

 

We relied upon codes from hospital administrative databases to identify emergency department 

visits for pediatric asthma. Our definition was relatively broad and included codes for both 

asthma and wheeze among children age 5-17 years. We excluded children younger than 5 years 

from our analysis because young children frequently experience transient wheeze, and asthma 
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diagnoses may be suspect (46); however, even among children age 5 years and older, we 

observed significant hospital-to-hospital variability in the proportion of emergency visits coded 

as “asthma” as opposed to “wheeze.” Further, we observed variability in the coding of primary 

versus secondary diagnoses; for asthma, this typically occurred when a patient presented with 

both asthma symptoms and a respiratory infection. We conducted subanalyses limited to 

emergency department visits where asthma or wheeze was reported as the primary diagnosis and 

observed results similar to those from our primary analytic approach. Because co-morbidities 

were not coded completely and consistently across hospitals, we deemed these data to be of 

inadequate quality to support analyses where individual visits were stratified according to the 

presence or absence of a respiratory infection as a co-morbidity, even though at the aggregate-

level the daily count of emergency department visits for respiratory infections was likely an 

adequate surrogate for the actual burden of respiratory infections in Atlanta. We controlled for 

the daily count of upper respiratory visits in our statistical models and found it to be an 

extremely strong predictor of the rate of emergency department visits for pediatric asthma; 

further, we observed evidence of confounding by respiratory infections, as control for this 

covariate tended to attenuate the rate ratio estimates, particularly during the warm season. 

 

Although we chose our primary statistical model carefully, all statistical models are misspecified 

to some degree. Therefore, we reported results from sensitivity analyses using alternative model 

specifications. Our primary model is based on the case-crossover design, with implementation 

via Poisson time-series models that account for overdispersion, given that under certain 

formulations these approaches are nearly identical (the conditional logistic regression estimating 

equation that is used in time-stratified case-crossover analyses is equivalent to a Poisson time-
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series model with an indicator variable for each stratum when disease is rare and there is a shared 

exposure such as air pollution) (27, 47). Traditionally, investigators have implemented the case-

crossover design by matching either on day-of-week (48, 49) or temperature (50) within a given 

month; matching on both day-of-week and temperature is typically not feasible, because data 

become sparse with too many matching factors. To implement a case-crossover approach in a 

time-series framework requires terms for the main effects of year, month, and the matching-

factor (e.g., a term for each day-of-week); terms for the two-way interactions between year and 

month, year and day-of-week, and month and day-of-week; and terms for the three-way 

interactions between year, month, and day-of-week. In developing our primary analytic 

approach, we explored case-crossover models with matching on year, month, and either day-of-

week or lag 0 maximum temperature; however, regardless of the approach, we observed 

evidence of confounding by within-month trends, e.g., the increasing trend in asthma 

exacerbations during late August and September due to the “back-to-school” effect (51). To 

smoothly control for these within-month trends we included a cubic polynomial for day-of-

season in the regression models. Given this cubic polynomial, inclusion of the three-way 

interaction terms no longer meaningfully changed the point estimates for the air pollutant effect. 

Therefore, we abandoned the three-way interactions (and thereby removed hundreds of 

parameters from the model), and instead implemented a case-crossover analysis by matching 

only on month and year. In addition to matching on these factors, we controlled tightly for both 

day-of-week and lag 0 maximum temperature; our base model included indicator variables for 

year, month, day-of-week, and lag 0 maximum temperature (for each degree of Celsius), as well 

as selected two-way interactions (between month and year; month and day-of-week; and month 
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and lag 0 maximum temperature) that we found to be highly predictive of the pediatric asthma 

emergency department visit rates.  

 

Even though we controlled tightly for meteorology and temporal trends and employed a case-

only analytic approach, confounding by an unmeasured or inadequately modeled risk factor that 

varied in a systematic way with short-term fluctuations in ambient air pollutant concentrations 

could have biased our results. Although we cannot dismiss the possibility of confounding by an 

unmeasured factor, we conducted extensive analyses to understand the relationships with 

meteorology, temporal trends, and ambient pollen concentrations in our data. Further, we 

investigated associations with the lag -1 pollutant concentration (the concentration on the day 

after the emergency department visit), while simultaneously controlling for the average 

concentration on lags 0-2, as an approach to evaluate model misspecification (14, 52), since we 

know that tomorrow’s pollutant concentrations are not causally related to today’s count of 

emergency department visits, and any association not due to chance must be biased.  

 

Measurement error is inherent in all large epidemiologic studies of urban air pollution health 

effects. Although studies of personal exposures to air pollutants help to advance understanding of 

biological responses, from a regulatory standpoint the ambient concentrations are of greatest 

relevance. One prominent component of error in our study is, therefore, how well the population-

weighted spatial average of measurements from urban monitoring stations approximates the 

ambient concentration across the entire metropolitan Atlanta area. The extent of this 

measurement error likely varies by pollutant, with primary pollutants (such as those from traffic 

sources) tending to have more measurement error than secondary pollutants (such as ozone and 
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PM2.5 sulfate) (18, 53). Indeed, in previous work, we observed associations between emergency 

department visits for cardiovascular disease and spatially heterogeneous pollutants (carbon 

monoxide and nitrogen dioxide) using measurements from several different air pollution 

monitors located within 20 miles of the Atlanta population center; however, we did not observe 

associations when measurements were used from a rural monitor located 38 miles away. 

Conversely, we observed associations for the spatially homogeneous pollutants (ozone and 

PM2.5) regardless of whether the measurements were from the rural or urban monitors (18). Also 

contributing to the measurement error issue is the number of air pollutant monitoring stations, 

which ranged from only one central monitor (for PM10-2.5 and PM2.5 water-soluble metals) to 11 

monitors (for PM2.5). Interpretation of two-pollutant models is complicated by these 

measurement error issues; the pollutant with the stronger estimated effect (e.g., ozone in our 

analyses) may not be the more harmful pollutant but may instead be the pollutant that has less 

measurement error (20). This measurement error also impacts the statistical power to detect 

effects. In our study we did not find evidence of synergism between ozone and any of the other 

air pollutants, perhaps due to issues involving measurement error and statistical power. 

 

The findings from our large, population-based time-series study in Atlanta complement previous 

findings from multicity studies (13, 54). Whereas multicity designs offer a statistically powerful 

approach for investigating the health effects of ambient air pollutants, large single-city studies 

provide the opportunity for investigators to better understand and account for the nuances of 

local data. Further, the SOPHIA study, which has amassed data on over 10,000,000 emergency 

department visits in metropolitan Atlanta since 1993, affords ample statistical power to detect 

subtle health effects of ambient air pollutants, including the health effects of PM2.5 components. 
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In our study we observed evidence that ambient concentrations of ozone and primary pollutants 

from traffic sources independently contributed to the burden of emergency department visits for 

pediatric asthma. Further, these associations were present at relatively low ambient 

concentrations, reinforcing the need for continued evaluation of the EPA’s National Ambient Air 

Quality Standards to ensure that the standards are sufficient to protect susceptible individuals.  
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Figure 1. Loess dose-response estimates (solid line) and twice-standard error estimates (dashed 

lines) from generalized additive models for associations between 3-day moving average air 

pollutant concentrations and emergency department visits for pediatric asthma. The reference 

(denominator) for the rate ratio is the estimated rate at the 5
th

 percentile of the pollutant 

concentration. Estimates are presented for the 5
th

 percentile through the 95
th

 percentile of 

pollutant concentrations due to instability in the dose-response estimates at the distribution tails. 
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Figure 2. Constrained cubic polynomial distributed lag models. The rate ratio and 95% 

confidence interval displayed for each pollutant correspond to an interquartile range increase in 

the cumulative ambient pollutant concentration during the 8-day period of interest (lags 0 

through 7). Point estimates and 95% confidence intervals are also presented graphically for the 

lag-specific rate-ratios. To enhance the stability of the distributed lag estimates, the cubic 

polynomial was fit to lags 0-13; however, the rate ratios and 95% confidence intervals presented 

in the Figure correspond to the effects of lags 0-7 only. 
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Figure 3. Warm season rate ratios and 95% confidence intervals for interquartile range increases 

in 3-day moving average ambient air pollutant concentrations for single-pollutant and two-

pollutant models. Abbreviations: CO (carbon monoxide), O3 (ozone), NO2 (nitrogen dioxide), 

EC (PM2.5 elemental carbon), SO4 (PM2.5 sulfate). 

*Time period limited to 1 August 1998 – 31 December 2004  
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Table 1.  Descriptions (mean, standard deviation, interquartile range (IQR), percent missing and 

number of monitors) of population weighted ambient air pollutant concentrations and maximum 

temperature.* 
 Overall 

(Jan-Dec) 

Mean ± SD 

Warm Season 

(May-Oct) 

Mean ± SD 

Cold Season 

(Nov-Apr) 

Mean ± SD 

 

 

IQR 

 

Percent 

Missing 

Number 

of 

monitors 

8-h ozone (ppb)† 45.4 ± 20.0 55.2 ± 19.2 34.5 ± 14.6 29.2 4 5 

1-h nitrogen dioxide (ppb)† 23.3 ± 9.7 22.0 ± 9.4 24.5 ± 9.8 12.9 <1 6 

1-h carbon monoxide (ppm)† 0.9 ± 0.5 0.9 ± 0.4 1.0 ± 0.6 0.6 5 4 

1-h sulfur dioxide (ppb)† 10.8 ± 9.5 9.6 ± 8.7 12.0 ± 10.2 11.5 0 5 

24-h PM10 (µg/m
3
)‡ 23.8 ± 11.5 27.6 ± 11.6 20.0 ± 10.0 14.6 1 9 

24-h PM10-2.5 (µg/m
3
)§ 9.0 ± 5.0 9.7 ± 4.7 8.3 ± 5.3 5.9 7 1 

24-h PM2.5 (µg/m
3
)§ 16.4 ± 7.4 18.4 ± 7.6 14.3 ± 6.5 9.2 <1 11 

24-h PM2.5 sulfate (µg/m
3
)§ 4.6 ± 3.1 5.9 ± 3.5 3.2 ± 1.8 3.5 1 6 

24-h PM2.5 elemental carbon (µg/m
3
)§ 0.9 ± 0.6 0.8 ± 0.6 0.9 ± 0.6 0.7 <1 6 

24-h PM2.5 organic carbon (µg/m
3
)§ 4.9 ± 3.4 4.8 ± 2.7 5.0 ± 4.0 3.4 <1 6 

24-h PM2.5 water-soluble metals (µg/m
3
)§ 0.030 ± 0.023 0.039 ± 0.025 0.020 ± 0.016 0.025 9 1 

Maximum temperature (°C) 22.4 ± 8.4 28.5 ± 4.6 16.1 ± 6.6 13.0 0 1 

* Because the means presented are population-weighted spatial averages, they may differ from the means of 

concentrations measured at urban central site monitors. For comparison, the mean central site concentrations were: 

ozone – 47.3ppb; nitrogen dioxide – 43.2 ppb; carbon monoxide – 1.6 ppm; sulfur dioxide – 15.0 ppb; PM10 – 26.6 

µg/m
3
; PM10-2.5 – 9.0 µg/m

3
; PM2.5 – 17.1 µg/m

3
; PM2.5 sulfate – 4.9 µg/m

3
; PM2.5 elemental carbon – 1.6 µg/m

3
; 

PM2.5 organic carbon – 4.4 µg/m
3
; PM2.5 water soluble metals – 0.030 µg/m

3
. 

† Measurements available during 1 January 1993 – 31 December 2004 (n=4383). Ozone was not measured 

December 1994–February 1995 and December 1995 – February 1995. 

‡Measurements available during 1 January 1996 – 31 December 2004 (n=3288). 

§Measurements available during 1 August 1998 – 31 December 2004 (n=2345). 
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Table 2. Rate ratios and 95% confidence intervals from Poisson general linear models for 

interquartile range increases in 3-day moving average population-weighted ambient air pollutant 

concentrations.* 
 Overall 

(Jan-Dec) 

Warm Season 

(May-Oct) 

Cold Season  

(Nov-Apr) 

Ozone†‡ 1.062 (1.031, 1.093) 1.082 (1.043, 1.123) 1.044 (0.992, 1.098)  

Nitrogen dioxide† 1.036 (1.018, 1.055) 1.066 (1.038, 1.095) 1.016 (0.992, 1.040) 

Carbon monoxide† 1.023 (1.006, 1.041) 1.068 (1.034, 1.102) 1.005 (0.985, 1.025) 

Sulfur dioxide† 1.012 (0.994, 1.030) 1.030 (1.002, 1.058) 1.001 (0.978, 1.025) 

PM10§ 1.020 (1.003, 1.038) 1.026 (1.001, 1.051) 1.018 (0.994, 1.043) 

PM10-2.5║ 1.034 (1.011, 1.057) 1.025 (0.991, 1.059) 1.041 (1.010, 1.073) 

PM2.5║ 1.020 (1.002, 1.039) 1.043 (1.016, 1.070) 1.005 (0.978, 1.031) 

PM2.5 sulfate║ 1.014 (0.995, 1.033) 1.027 (1.004, 1.049) 0.991 (0.953, 1.029) 

PM2.5 elemental carbon║ 1.015 (0.997, 1.033) 1.041 (1.010, 1.072) 1.003 (0.981, 1.026) 

PM2.5 organic carbon║ 1.008 (0.994, 1.021) 1.034 (1.007, 1.062) 1.000 (0.985, 1.016) 

PM2.5 water-soluble metals║ 1.021 (1.000, 1.042) 1.029 (1.003, 1.055) 1.005 (0.968, 1.043) 

*Interquartile ranges presented in Table 1  

†Measurements available January, 1993 – December, 2004 

‡ When the cold season was divided into the more temperate months (March, April, November) vs. the coldest 

months (December, January, February) we observed rate ratios of 1.107 (1.035, 1.184) for November/March/April 

and 0.968 (0.895, 1.047) for December/January/February. 

§Measurements available January, 1996 – December, 2004 

║Measurements available August, 1998 – December, 2004 
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Table 3. Rate ratios (RR) and 95% confidence intervals for quintiles of 3-day moving average 

population-weighted ambient air pollutant concentrations. 
 Cold Season RR (95% CI)* 

Ozone (ppb)† 

Warm Season RR (95% CI)* 

 

        Q2 (26.3 to < 38.7) 1.002 (0.953, 1.054) 1.039 (0.998, 1.081) 

        Q3 (38.7 to < 51.5) 1.016 (0.961, 1.074) 1.097 (1.037, 1.161) 

        Q4 (51.5 to < 67.0) 1.061 (0.999, 1.127) 1.151 (1.065, 1.243) 

        Q5 (67.0 to ≤ 147.5) 1.111 (1.038, 1.189) 1.150 (1.013, 1.306) 

Nitrogen dioxide (ppb)†   

        Q2 (28.0 to < 37.1) 1.033 (0.999, 1.069) 0.996  (0.964, 1.030) 

        Q3 (37.1 to < 46.0) 1.040 (1.000, 1.081) 0.984  (0.950, 1.020) 

        Q4 (46.0 to < 57.1) 1.087 (1.044, 1.131) 1.024  (0.985, 1.064) 

        Q5 (57.1 to ≤ 181.0) 1.087 (1.036, 1.140) 1.014  (0.973, 1.056) 

Carbon monoxide (ppm)†   

        Q2 (0.70 to < 1.01) 1.019 (0.986, 1.054) 1.010 (0.977, 1.045) 

        Q3 (1.01 to < 1.05) 1.046 (1.008, 1.086) 1.040 (1.005, 1.076) 

        Q4 (1.05 to < 2.30) 1.097 (1.049, 1.147) 1.005 (0.969, 1.042) 

        Q5 (2.30 to ≤ 7.70) 1.112 (1.054, 1.174) 1.021 (0.981, 1.064) 

Sulfur dioxide (ppb)†   

        Q2 (3.1 to < 7.0) 1.021 (0.988, 1.055) 0.968 (0.935, 1.002) 

        Q3 (7.0 to < 13.0) 1.041 (1.007, 1.077) 0.998 (0.964, 1.034) 

        Q4 (13.0 to < 24.2) 1.048 (1.010, 1.087) 0.982 (0.947, 1.017) 

        Q5 (24.2 to ≤ 149.0) 1.008 (0.967, 1.051) 0.987 (0.949, 1.026) 

PM10 (µg/m3)‡   

        Q2 (16.0  to < 21.9) 1.014 (0.968, 1.061) 1.008 (0.978, 1.038) 

        Q3 (21.9 to < 28.0) 1.029 (0.981, 1.080) 0.996 (0.963, 1.030) 

        Q4 (28.0 to < 36.0) 1.027 (0.979, 1.078) 1.017 (0.977, 1.059) 

        Q5 (36.0 to ≤ 98.4) 1.059 (1.006, 1.116) 1.047 (0.991, 1.106) 

PM10-2.5 (µg/m3)§   

        Q2 (5.0 to < 7.1) 0.975 (0.924, 1.028) 0.972 (0.930, 1.012) 

        Q3 (7.1 to < 9.3) 0.986 (0.934, 1.040) 1.006 (0.960, 1.054) 

        Q4 (9.3 to < 12.3) 0.964 (0.909, 1.022) 1.045 (0.996, 1.097) 

        Q5 (12.3 to ≤ 50.4) 1.005 (0.942, 1.072) 1.075 (1.015, 1.139) 

PM2.5 (µg/m3)§   

        Q2 (10.0 to < 13.7) 0.993 (0.943, 1.047) 0.985 (0.952, 1.019) 

        Q3 (13.7 to < 17.6) 1.008 (0.956, 1.062) 0.979 (0.943, 1.017) 

        Q4 (17.6 to < 23.8) 1.018 (0.966, 1.073) 1.006 (0.960, 1.049) 

        Q5 (23.8 to ≤ 65.8)  1.052 (0.995 , 1.112) 1.050 (0.997, 1.106) 

PM2.5 sulfate (µg/m3)§   

        Q2 (2.2 to < 3.3) 1.032 (0.951, 1.120) 0.987 (0.950, 1.025) 

        Q3 (3.3 to < 4.6) 1.048 (0.968, 1.135) 1.045 (0.998, 1.094) 

        Q4 (4.6 to < 7.2) 1.061 (0.978, 1.150) 1.008 (0.944, 1.077) 

        Q5 (7.2 to ≤ 21.9) 1.082 (0.995, 1.177) 1.027 (0.931, 1.133) 

PM2.5 elemental carbon (µg/m3)§  

        Q2 (0.78 to < 1.13) 0.981 (0.936, 1.028) 1.034 (0.994, 1.076) 

        Q3 (1.13 to < 1.55) 1.023 (0.977, 1.071) 1.027 (0.984, 1.072) 

        Q4 (1.55 to < 2.25) 1.050 (1.004, 1.107) 1.014 (0.971, 1.058) 

        Q5 (2.25 to ≤ 11.89) 1.056 (1.000, 1.115) 1.039 (0.990, 1.091) 

PM2.5 organic carbon (µg/m3)§  

        Q2 (2.54 to < 3.41) 1.024 (0.976, 1.073) 0.983 (0.942, 1.025) 

        Q3 (3.41 to < 4.32) 1.070 (1.020, 1.122) 1.028 (0.983, 1.075) 

        Q4 (4.32 to < 5.82) 1.078 (1.024, 1.135) 0.993 (0.950, 1.038) 

        Q5 (5.82 to ≤ 25.93) 1.065 (1.006, 1.128) 1.017 (0.972, 1.063) 

PM2.5 water-soluble metals (µg/m3)§  

        Q2 (0.0123 to < 0.0195) 1.026 (0.946, 1.112) 0.992 (0.953, 1.032) 

        Q3 (0.0195 to < 0.0276) 1.081 (0.999, 1.170) 1.004 (0.958, 1.053) 

        Q4 (0.0276 to < 0.0436) 1.113 (1.026, 1.206) 1.036 (0.978, 1.096) 

        Q5 (0.0436 to ≤ 0.202) 1.119 (1.028, 1.218) 1.009 (0.934, 1.090) 

*Relative to the first quintile (concentrations less than the lower bound of the second quintile) 

Page 27 of 34



28 

 

† Measurements available January, 1993 – December, 2004 

‡ Measurements available August, 1998 – December, 2004 

§ Measurements available August, 1998 – December, 2004
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Table 4. Sensitivity analyses: Rate ratios (RR) and 95% confidence intervals for interquartile range increases in 3-day moving average 

population-weighted ambient air pollutant concentrations.  
 Base model* No URI control† Alternative model specifications Lag -1 pollution** 

 

RR (95% CI) RR (95% CI) 

Time-series‡ 

RR (95% CI) 

Case-crossover§ 

RR (95% CI) 

Bi-monthly windows║ 

RR (95% CI) RR (95% CI) 

 Warm Season (May–October) 

Ozone 1.082 (1.043, 1.123) 1.106 (1.066, 1.147) 1.071 (1.025, 1.119) 1.092 (1.049, 1.137) 1.058 (1.014, 1.104) 1.015 (0.991, 1.039) 
Nitrogen dioxide 1.066 (1.038, 1.095) 1.073 (1.045, 1.102) 1.058 (1.028, 1.088) 1.096 (1.065, 1.127) 1.065 (1.034, 1.098) 1.000 (0.981, 1.019) 
Carbon monoxide 1.068 (1.034, 1.102) 1.073 (1.039, 1.107) 1.062 (1.030, 1.096) 1.090 (1.054, 1.127) 1.053 (1.016, 1.092) 1.009 (0.988, 1.031) 
Sulfur dioxide 1.030 (1.002, 1.058) 1.033 (1.006, 1.062) 1.021 (0.992, 1.051) 1.009 (0.981, 1.039) 1.014 (0.984, 1.046) 1.007 (0.990, 1.025) 
PM10  1.026 (1.001, 1.051) 1.043 (1.018, 1.068) 1.031 (1.005, 1.058) 1.057 (1.030, 1.085) 1.022 (0.994, 1.050) 1.024 (1.005 , 1.043) 

PM10-2.5 1.025 (0.991, 1.059) 1.032 (0.998, 1.067) 1.028 (0.992, 1.065) 1.062 (1.026, 1.099) 0.984 (0.945, 1.024) 1.004 (0.983, 1.025) 
PM2.5  1.043 (1.016, 1.070) 1.060 (1.033, 1.088) 1.041 (1.012, 1.071) 1.043 (1.015, 1.072) 1.015 (0.984, 1.046) 1.024 (1.004, 1.045) 

PM2.5 sulfate  1.027 (1.004, 1.049) 1.040 (1.017, 1.063) 1.025 (1.002, 1.048) 1.024 (1.000, 1.047) 1.003 (0.977, 1.029) 1.017 (1.001, 1.034) 

PM2.5 elemental carbon  1.041 (1.010, 1.072) 1.051 (1.020, 1.083) 1.032 (1.000, 1.065) 1.057 (1.024, 1.090) 1.036 (0.984, 1.091) 1.000 (0.979, 1.020) 
PM2.5 organic carbon 1.034 (1.007, 1.062) 1.047 (1.020, 1.075) 1.036 (1.005, 1.067) 1.050 (1.021, 1.079) 1.019 (0.987, 1.052) 1.000 (0.982, 1.018) 
PM2.5 water-soluble metals  1.029 (1.003, 1.055) 1.039 (1.013, 1.065) 1.021 (0.996, 1.047) 1.030 (1.004, 1.057) 1.015 (0.986, 1.045) 0.992 (0.976, 1.009) 

 Cold Season (November–April) 
Ozone 1.044 (0.992, 1.098) 1.062 (1.010, 1.118) 1.013 (0.953, 1.077) 1.053 (0.996, 1.113) 1.019 (0.961, 1.080) 1.004 (0.973, 1.036) 
Nitrogen dioxide 1.016 (0.992, 1.040) 1.023 (1.000, 1.048) 1.007 (0.982, 1.033) 1.020 (0.994, 1.047) 1.022 (0.995, 1.050) 0.999 (0.983, 1.014) 
Carbon monoxide 1.005 (0.985, 1.025) 1.017 (0.997, 1.037) 1.002 (0.982, 1.023) 1.003 (0.981 , 1.025) 1.005 (0.982, 1.028) 0.999 (0.986, 1.012) 
Sulfur dioxide 1.001 (0.978, 1.025) 1.000 (0.977, 1.024) 1.009 (0.984, 1.034) 0.999 (0.975 , 1.025) 1.014 (0.988, 1.040) 1.003 (0.990, 1.017) 
PM10  1.018 (0.994, 1.043) 1.026 (1.001, 1.051) 1.009 (0.983, 1.035) 1.033 (1.006, 1.061) 1.020 (0.992, 1.049) 0.995 (0.976, 1.014) 
PM10-2.5  1.041 (1.010, 1.073) 1.036 (1.006, 1.068) 1.018 (0.985, 1.052) 1.073 (1.041, 1.107) 1.042 (1.004, 1.080) 1.001 (0.981, 1.020) 
PM2.5  1.005 (0.978, 1.031) 0.995 (0.969, 1.022) 0.999 (0.971, 1.028) 1.027 (0.998, 1.056) 1.012 (0.982, 1.044) 0.982 (0.961, 1.003) 
PM2.5 sulfate  0.991 (0.953, 1.029) 0.976 (0.939, 1.014) 0.980 (0.941, 1.022) 1.026 (0.983, 1.070) 1.012 (0.968, 1.059) 0.971 (0.943, 1.000) 
PM2.5 elemental carbon  1.003 (0.981, 1.026) 1.005 (0.983, 1.028) 0.998 (0.974, 1.022) 1.014 (0.992, 1.037) 1.004 (0.979, 1.030) 0.996 (0.981, 1.012) 
PM2.5 organic carbon 1.000 (0.985, 1.016) 0.999 (0.984, 1.015) 0.998 (0.981, 1.105) 1.007 (0.992, 1.023) 1.002 (0.985, 1.020) 0.994 (0.983, 1.010) 
PM2.5 water-soluble metals  1.005 (0.968, 1.043) 1.004 (0.967, 1.043) 0.985 (0.949, 1.023) 1.017 (0.978, 1.058) 0.994 (0.949, 1.042) 0.998 (0.974, 1.023) 

* The “base model” is the primary statistical model as described in the Methods section. The results in this column are reproduced from Table 2. 

† Model is identical to the base model, except there is no control for pediatric emergency department visits for upper respiratory infections. 

‡ Model is does not contain terms for year; month; month*year interactions; month*lag 0 maximum temperature interactions; and month*day-of-week 

interactions. Instead cubic splines with monthly knots are included to control for long-term and seasonal trends. Daily average temperature and dew point were 

modeled using cubic splines with knots at the 25
th

 and 75
th

 percentiles. These models are analogous to those we presented in earlier publications (14, 18, 20, 24, 

30). 

§ Model contains three-way interactions between year, month, and day-of-week and does not contain month*lag 0 maximum temperature interactions.  

║ Model is identical to the base model, except that bimonthly (twice-per-month) indicator variables are used instead of monthly indicator variables. 

**Model is identical to the base model, save for the addition of tomorrow’s (lag -1) pollutant concentration, which has been included in the model. The results in 

this column are the rate ratio estimated for the lag -1 term. 
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Table E1. Partial spearman correlation coefficients* for daily population-weighted pollutant concentrations during the warm season 

(bottom) and cold season (top, shaded). 

 Ozone Nitrogen 

dioxide 

Carbon 

monoxide 

Sulfur 

dioxide 

PM10 PM10-2.5 PM2.5 PM2.5 

sulfate 

PM2.5 

element. 

carbon 

PM2.5 

organic 

carbon 

PM2.5 

water-

soluble 

metals 

Ozone  0.11 -0.02 0.04 -0.05 -0.05 -0.12 -0.02 -0.16 -0.08 -0.07 

Nitrogen dioxide 0.42  0.59 0.36 0.46 0.25 0.37 0.11 0.51 0.42 0.41 

Carbon monoxide 0.24 0.54  0.19 0.49 0.22 0.38 0.09 0.58 0.48 0.43 

Sulfur dioxide 0.17 0.37 0.20  0.15 0.08 0.00 0.10 0.09 0.02 0.05 

PM10 0.47 0.44 0.37 0.23  0.49 0.76 0.51 0.54 0.63 0.55 

PM10-2.5 0.15 0.27 0.27 0.17 0.51  0.26 0.15 0.31 0.29 0.33 

PM2.5 0.50 0.36 0.32 0.13 0.82 0.29  0.68 0.51 0.66 0.56 

PM2.5 sulfate 0.45 0.25 0.18 0.16 0.71 0.19 0.81  0.19 0.31 0.39 

PM2.5 elemental 

carbon 

0.25 0.47 0.52 0.20 0.47 0.34 0.44 0.31  0.78 0.45 

PM2.5 organic 

carbon 

0.44 0.44 0.40 0.11 0.61 0.32 0.62 0.47 0.64  0.48 

PM2.5 water-soluble 

metals 

0.29 0.40 0.42 0.18 0.57 0.36 0.55 0.45 0.47 0.46  

*Correlation after adjusting for log of the daily count of emergency department visits for upper respiratory infections, same day maximum 

temperature (exact °C), lag 1-2 minimum temperature (cubic terms), lag 0-1-2 average dew point temperature (cubic terms), month, year, 

month*year interactions, weekday, holiday, maximum temperature*month interactions, month*weekday interactions.  
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