HomePatientsLung Disease Week at the ATS2015LAM ▶ References

LAM Week


  1. Juvet, S. C., McCormack, F. X., Kwiatkowski, D. J. & Downey, G. P. Molecular Pathogenesis of Lymphangioleiomyomatosis: Lessons Learned from Orphans. Am. J. Respir. Cell Mol. Biol. 36, 398-408 (2006).

  2. Henske, E. P. & McCormack, F. X. Lymphangioleiomyomatosis — a wolf in sheep’s clothing. J Clin Invest 122, 3807-3816, doi:10.1172/jci58709 (2012).

  3. McCormack, F. X., Travis, W. D., Colby, T. V., Henske, E. P. & Moss, J. Lymphangioleiomyomatosis: Calling It What It Is: A Low-Grade, Destructive, Metastasizing Neoplasm. Am. J. Respir. Crit. Care Med. 186, 1210-1212, doi:10.1164/rccm.201205-0848OE (2012).

  4. Gao, L., Yue, M., Davis, J., Hyjek, E. & Schuger, L. In pulmonary lymphangioleiomyomatosis expression of progesterone receptor is frequently higher than that of estrogen receptor. Virchows Archiv 464, 495-503, doi:10.1007/s00428-014-1559-9 (2014).

  5. Darling, T. N. et al. Lymphangioleiomyomatosis and TSC2-/- Cells. Lymph. Res. Biol. 8, 59-69, doi:doi:10.1089/lrb.2009.0031 (2010).

  6. Henske, E. P. Metastasis of benign tumor cells in tuberous sclerosis complex. Genes Chromosomes Cancer 38, 376-381 (2003).

  7. Goncharova, E. A., Goncharov, D. A., Lim, P. N., Noonan, D. & Krymskaya, V. P. Modulation of cell migration and invasiveness by tumor suppressor TSC2 in Lymphangioleiomyomatosis. Am. J. Respir. Cell Mol. Biol. 34, 473-480 (2006).

  8. Zhe, X., Yang, Y., Jakkaraju, S. & Schuger, L. TIMP-3 downregulation in lymphangioleiomyomatosis: potential consequence of abnormal SRF expression. Am. J. Respir. Cell Mol. Biol. 28, 504-511 (2003).

  9. Chang, W. Y. C., Clements, D. & Johnson, S. R. Effect of doxycycline on proliferation, MMP production and adhesion in LAM related cells. Am. J. Physiol. Lung. Cell. Mol. Physiol. 299, L393-L400, doi:10.1152/ajplung.00437.2009 (2010).

  10. Glassberg, M. K. et al. Activation of the Estrogen Receptor Contributes to the Progression of Pulmonary Lymphangioleiomyomatosis via Matrix Metalloproteinase-Induced Cell Invasiveness. J. Clin. Endocrinol. Metab. 93, 1625-1633, doi:10.1210/jc.2007-1283 (2008).

  11. Lee, P.-S. et al. Rapamycin-insensitive Up-regulation of MMP2 and Other Genes in TSC2-deficient LAM-like Cells. Am. J. Respir. Cell Mol. Biol. 42, 227-234, doi:10.1165/rcmb.2009-0050OC (2009).

  12. Moir, L. M. et al. Doxycycline inhibits MMP-2 secretion from TSC2-null MEFs and lymphangioleiomyomatosis cells. Br. J. Pharmacol. 164, 83-92, doi:10.1111/j.1476-5381.2011.01344.x (2011).

  13. Smolarek, T. A. et al. Evidence that lymphangiomyomatosis is caused by TSC2 mutations: chromosome 16p13 loss of heterozygosity in angiolipomas and lymph nodes from women with lymphangiomyomatosis. Am. J. Hum. Genet. 62, 810-815 (1998).

  14. Carsillo, T., Astrinidis, A. & Henske, E. P. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc. Natl. Acad. Sci. USA 97, 6085-6090 (2000).

  15. Sato, T. et al. Mutational analysis of the TSC1 and TSC2 genes in Japanese patients with pulmonary lymphangileiomyomatosis. J. Hum. Genet. 47, 20-28 (2002).

  16. Dabora, S. L. et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am. J. Hum. Genet. 68, 64-80 (2001).

  17. Goncharova, E. A. et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation: a role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis. J. Biol. Chem. 277, 30958-30967 (2002).

  18. Kwiatkowski, D. J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 11, 525-534 (2002).

  19. Bissler, J. J. et al. Sirolimus for Angiomyolipoma in Tuberous Sclerosis Complex or Lymphangioleiomyomatosis. N. Engl. J. Med. 358, 140-151, doi:10.1056/NEJMoa063564 (2008).

  20. McCormack, F. X. et al. Efficacy and Safety of Sirolimus in Lymphangioleiomyomatosis. N. Engl. J. Med. 364, 1595-1606, doi:10.1056/NEJMoa1100391 (2011).

  21. Guertin, D. A. & Sabatini, D. M. Defining the Role of mTOR in Cancer. Canc. Cell 12, 9-22 (2007).

  22. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR activation. Cell 110, 177-189 (2002).

  23. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175 (2002).

  24. Schalm, S. S., Fingar, D. C., Sabatini, D. M. & Blenis, J. TOS motif-mediated raptor binding regulates 4E-BP1 multiple phosphorylation and function. Curr. Biol. 13, 797-806 (2003).

  25. Frias, M. A. et al. mSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct mTORC2s. Curr. Biol. 16, 1865-1870 (2006).

  26. Jacinto, E. et al. SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity. Cell 127, 125-137 (2006).

  27. Laplante, M. & Sabatini, D. M. mTOR signaling at a glance. J Cell Sci 122, 3589-3594, doi:10.1242/jcs.051011 (2009).

  28. Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell. Biol. 6, 1122-1128 (2004).

  29. Sarbassov, D. D. et al. Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton. Curr. Biol. 14, 1296-1302 (2004).

  30. Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell. Biol. 12, 21-35, doi: (2011).

  31. Saci, A., Cantley, Lewis C. & Carpenter, Christopher L. Rac1 Regulates the Activity of mTORC1 and mTORC2 and Controls Cellular Size. Mol. Cell 42, 50-61 (2011).

  32. Goncharova, E., Goncharov, D., Noonan, D. & Krymskaya, V. P. TSC2 modulates actin cytoskeleton and focal adhesion through TSC1-binding domain and the Rac1 GTPase. J. Cell Biol. 167, 1171-1182 (2004).

  33. Goncharova, E. A. et al. mTORC2 Is Required for Proliferation and Survival of TSC2-Null Cells. Mol. Cell. Biol. 31, 2484-2498, doi:10.1128/mcb.01061-10 (2011).

  34. El-Hashemite, N. & Kwiatkowski, D. J. Interferon-g-Jak-Stat Signaling in Pulmonary Lymphangioleiomyomatosis and Renal Angiomyolipoma: A Potential Therapeutic Target. Am. J. Respir. Cell Mol. Biol. 33, 227-230 (2005).

  35. El-Hashemite, N., Zhang, H., Walker, V., Hoffmeister, K. M. & Kwiatkowski, D. J. Perturbed IFN-g-Jak-Signal Transducers and Activators of Transcription Signaling in Tuberous Sclerosis Mouse Models: Synergistic Effects of Rapamycin-IFN-g Treatment. Cancer Res 64, 3436-3443 (2004).

  36. Goncharova, E. A. et al. Interferon b Augments Tuberous Sclerosis Complex 2 (TSC2)-Dependent Inhibition of TSC2-Null ELT3 and Human Lymphangioleiomyomatosis-Derived Cell Proliferation. Mol Pharmacol 73, 778-788, doi:10.1124/mol.107.040824 (2008).

  37. Goncharova, E. A. et al. Signal Transducer and Activator of Transcription 3 Is Required for Abnormal Proliferation and Survival of TSC2-Deficient Cells: Relevance to Pulmonary Lymphangioleiomyomatosis. Mol Pharmacol 76, 766-777 (2009).

  38. Parkhitko, A. et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proceedings of the National Academy of Sciences 108, 12455-12460, doi:10.1073/pnas.1104361108 (2011).

  39. Kumasaka, T. et al. Lymphangiogenesis-Mediated Shedding of LAM Cell Clusters as a Mechanism for Dissemination in Lymphangioleiomyomatosis. Am. J. Surg. Pathol. 29, 1356-1366 (2005).

  40. Seyama, K. et al. Lymphangioleiomyoma Cells and Lymphatic Endothelial Cells: Expression of VEGFR-3 in Lymphangioleiomyoma Cell Clusters. Am. J. Pathol. 176, 2051-2054, doi:10.2353/ajpath.2010.091239 (2010).

  41. Taveira-DaSilva, A. M., Hathaway, O., Stylianou, M. & Moss, J. Changes in Lung Function and Chylous Effusions in Patients With Lymphangioleiomyomatosis Treated With Sirolimus. Annals of Internal Medicine 154, 797-W293 (2011).

  42. Glasgow, C. G., El-Chemaly, S. & Moss, J. Lymphatics in lymphangioleiomyomatosis and idiopathic pulmonary fibrosis. European Respiratory Review 21, 196-206, doi:10.1183/09059180.00009311 (2012).

  43. Glasgow, C. G. et al. Involvement of Lymphatics in Lymphangioleiomyomatosis. Lymph. Res. Biol. 7, 221-228, doi:doi:10.1089/lrb.2009.0017 (2009).

  44. Glasgow, C. G., Taveira-DaSilva, A. M., Darling, T. N. & Moss, J. Lymphatic Involvement in Lymphangioleiomyomatosis. Anna. N. Y. Acad. Scien. 1131, 206-214, doi:10.1196/annals.1413.018 (2008).

  45. Matsui, K. et al. Extrapulmonary lymphangioleiomyomatosis (LAM): Clinicopathologic features in 22 cases. Hum. Pathol. 31, 1242-1248, doi: (2000).

  46. Seyama, K. et al. Vascular Endothelial Growth Factor-D Is Increased in Serum of Patients with Lymphangioleiomyomatosis Lymphatic Research and Biology 4, 143-152 (2006).

  47. Young, L. R. et al. Serum Vascular Endothelial Growth Factor-D Prospectively Distinguishes Lymphangioleiomyomatosis From Other Diseases. Chest 138, 674-681, doi:10.1378/chest.10-0573 (2010).

  48. Young, L. R. et al. Serum VEGF-D concentration as a biomarker of lymphangioleiomyomatosis severity and treatment response: a prospective analysis of the Multicenter International Lymphangioleiomyomatosis Efficacy of Sirolimus (MILES) trial. Lancet 1,445-452 (2013).

  49. Achen, M. G. et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proceedings of the National Academy of Sciences 95, 548-553 (1998).

  50. Karnezis, T. et al. VEGF-D Promotes Tumor Metastasis by Regulating Prostaglandins Produced by the Collecting Lymphatic Endothelium. Canc. Cell 21, 181-195, doi: (2012).

  51. Stacker, S. A. et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14, 159-172, doi:10.1038/nrc3677 (2014).

  52. Davis, J. M. et al. Lymphatic Endothelial Differentiation in Pulmonary Lymphangioleiomyomatosis Cells. Journal of Histochemistry & Cytochemistry 61, 580-590, doi:10.1369/0022155413489311 (2013).

  53. Baldwin, M. E. et al. The Specificity of Receptor Binding by Vascular Endothelial Growth Factor-D Is Different in Mouse and Man. J. Biol. Chem. 276, 19166-19171, doi:10.1074/jbc.M100097200 (2001).

  54. Baldwin, M. E. et al. Vascular Endothelial Growth Factor D Is Dispensable for Development of the Lymphatic System. Mol. Cell. Biol. 25, 2441-2449, doi:10.1128/mcb.25.6.2441-2449.2005 (2005).