

THIS OFFICIAL WORKSHOP REPORT OF THE AMERICAN THORACIC SOCIETY (ATS) AND THE EUROPEAN RESPIRATORY SOCIETY (ERS) WAS APPROVED BY THE ATS BOARD OF DIRECTORS, OCTOBER 2015, AND BY THE ERS SCIENCE COUNCIL AND EXECUTIVE COMMITTEE, SEPTEMBER 2015

Abstract

Ready access to physiologic measures, including respiratory mechanics, lung volumes, and ventilation/perfusion inhomogeneity, could optimize the clinical management of the critically ill pediatric or neonatal patient and minimize lung injury. There are many techniques for measuring respiratory function in infants and children but very limited information on the technical ease and applicability of these tests in the pediatric and neonatal intensive care unit (PICU, NICU) environments. This report summarizes the proceedings of a 2011 American Thoracic Society Workshop critically reviewing techniques available for ventilated and spontaneously breathing infants and children in the ICU. It outlines for each test how readily it is performed at the bedside and how it may impact patient management as well as indicating future areas of potential research collaboration. From expert panel discussions and literature reviews, we conclude that many of the techniques can aid in optimizing respiratory support in the PICU and NICU, quantifying the effect of therapeutic interventions, and guiding ventilator weaning and extubation. Most techniques now have commercially available equipment for the PICU and NICU, and many can generate continuous data points to help with ventilator weaning and other interventions. Technical and validation studies in the PICU and NICU are published for the majority of techniques; some have been used as outcome measures in clinical trials, but few have been assessed specifically for their ability to improve clinical outcomes. Although they show considerable promise, these techniques still require further study in the PICU and NICU together with increased availability of commercial equipment before wider incorporation into daily clinical practice.

*Joint first authors.

This document has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org

Ann Am Thorac Soc Vol 13, No 2, pp S1–S11, Feb 2016

Copyright © 2016 by the American Thoracic Society
DOI: 10.1513/AnnalsATS.201511-730ST
Internet address: www.atsjournals.org

Contents

Overview
Introduction
Methods
Measurement Techniques
 Dynamic/Passive Mechanics
 Forced Deflation
 Forced Oscillation Technique
 Ventilator Graphics
 Volumetric Capnography
 Inert Gas Washout
 Electrical Impedance Tomography
Chest Wall Measurements
Occlusion Pressures
Discussion and Future Directions
 Proposed Areas of Future Research
 Collaboration

Overview

The American Thoracic Society (ATS) workshop on Evaluation of Respiratory Mechanics and Function in the Pediatric and Neonatal Intensive Care Units was funded by the ATS and was held at the 2011 ATS International Conference meeting in Denver, Colorado, with a follow-on meeting at the 2012 ATS Conference. The workshop was initiated by the joint ATS/European Respiratory Society Working Group on Infant and Young Children Pulmonary Function Testing to address the lack of information on respiratory function techniques available to assist in the management of patients in pediatric and neonatal intensive care units (PICU, NICU).
The principal conclusions are as follows:

- The main clinical issues for which respiratory function measurements can provide useful information to guide management are:
 - assessing the physiologic nature and progression of respiratory disease
 - optimizing respiratory support and minimizing ventilator-associated lung injury
 - assessing the effect of therapeutic interventions (e.g., drugs, physiotherapy)
 - assessing readiness to wean from respiratory support
- The techniques considered currently useful or promising in providing this information are:
 - measurement of respiratory mechanics (compliance and resistance of lung or respiratory system) using both dynamic and passive techniques
 - measurement of forced expiratory flows and volumes using the negative pressure forced deflation technique
 - measurement of respiratory resistance and reactance using the forced oscillation technique (FOT)
 - use of ventilator graphics to provide qualitative visual information (both time-based and XY plots)
 - measurement of carbon dioxide elimination as a function of exhaled volume of gas (volumetric capnography)
 - measurement of lung volumes and ventilation distribution using inert gas washout techniques
 - dynamic assessment of regional ventilation using electrical impedance tomography
 - measurement of tidal volumes, flow parameters, and thoracoabdominal asynchrony at the chest wall (± simultaneous esophageal manometry)
 - assessment of respiratory drive and respiratory muscle strength using occlusion pressures
- All of these techniques are feasible and have been performed in PICU/NICU settings.
- Suitable commercial equipment is currently available for all techniques except FOT, forced deflation, and occlusion pressures.
- Adequate training and quality control are essential before any of the techniques are introduced into a PICU or NICU setting.

- Once equipment is in situ, each technique can be performed within approximately 15 minutes on each patient, and some can give continuous real-time data during supported ventilation.
- Additional time needs to be allowed for equipment setup, to await patient stability, and for calculation/interpretation of results; this will depend on the technique, the child’s clinical condition, and the experience of the operator.
- Risks are minimal, but the following precautions are important:
 - infection control issues must be addressed
 - awareness of increased dead space during some types of measurement
 - disconnection times must be minimized to avoid derecruitment in positive end-expiratory pressure (PEEP)–dependent patients
- There is a wealth of published data on the validity and technical aspects of the various techniques. Most techniques have been used as outcome measures in studies on therapeutic interventions. Empirical data on the ability of these measurements to assist in clinical management of individual patients are scarce: available data are restricted primarily to respiratory mechanics measurements, ventilator graphics, and volumetric capnography.

Introduction

Respiratory disease dominates admissions to both pediatric and neonatal intensive care units (PICU, NICU) to a greater extent than equivalent adult units (1). Nonetheless, the use of respiratory measurement techniques to guide management in children has lagged behind adult intensive care practices. Rapid advances in the development of respiratory function tests applicable to infants and young children have been achieved in recent years.

Since its establishment in 1990, the joint American Thoracic Society/European Respiratory Society (ATS/ERS) Working Group on Infant and Young Children Pulmonary Function Testing has published several statements and guidelines on the use of pediatric respiratory function tests for researchers and clinicians (2–14), but to date these publications have focused on the stable child in the outpatient or ambulatory setting. Discussions within and beyond the Working Group in 2010 to 2011 indicated (1) the availability of respiratory measurement techniques potentially applicable in pediatric intensive care unit/neonatal intensive care unit (PICU/NICU), and (2) a desire by clinicians to know more about these techniques. These discussions led directly to an ATS-funded project: “Evaluation of respiratory mechanics and function in the pediatric and neonatal intensive care units.”

The aim of this Workshop Report document is to identify and concisely review respiratory function tests that show the most promise for the clinical monitoring of vulnerable and critically ill young patients, requiring care in a PICU, NICU, or similar facility. The objectives were to (1) review the safety, feasibility, and published data to date on the relevant techniques; (2) list possible applications to guide clinical management in the PICU and NICU; and (3) identify future directions and research needs. Use of such techniques in the PICU and NICU may benefit patients through enhancing optimization of ventilator management and monitoring the response to therapeutic interventions. In addition, measurements can form a baseline to aid with monitoring evolution of respiratory disease both acutely in the PICU/NICU and at follow up.

Finally, it should be stressed that despite the potential clinical benefit many of these tests may provide, more research is warranted for each technique before any clinical recommendations on specific ages, disease entities, or outcome measures associated with testing. We aim to provide the pediatric and neonatal intensivist with a guide for choosing potential respiratory function tests and information regarding future research areas of interest, specifically bedside evaluations of lung volumes, ventilation inhomogeneity, and respiratory mechanics in ventilated patients.

Methods

This project originated in a Clinical Workshop run at the American Thoracic Society Annual Conference in New Orleans in 2010 (May 18, 2010) entitled “Making the Physiology Work for You: Lung Function Tests in the Pediatric and Neonatal Intensive Care Units.” This educational workshop was proposed by the ATS/ERS.
Working Group on Infant and Young Children Pulmonary Function Testing and was organized and chaired by S.P.-C. and P.C.S. Formal feedback was sought from the 45 attendees: the responses indicated the need for increased knowledge of the various techniques available and how these might influence clinical practice. Participants expressed a desire to have information regarding the application and interpretation of data from these various techniques. Furthermore, they noted that there was limited published information on the clinical applicability of lung function techniques in the PICU/NICU settings.

Consequently, we submitted an application to the ATS on behalf of the Working Group for a project entitled “Evaluation of respiratory mechanics and function in the pediatric and neonatal intensive care units.” P.C.S. and S.P.-C. contacted members of the ATS/ERS Working Group on Infant and Young Children Pulmonary Function Testing to collect opinion on (1) techniques to assess respiratory function that have been used in PICU/NICU, and (2) relevant experts who could contribute for each technique.

A provisional list of techniques was drawn up, and the identified experts for each technique were invited to a workshop at the ATS Annual Conference in Denver in 2011. The workshop was attended by advisors from the Working Group to give an overview, together with a technical advisor and a librarian from the ATS. Data for the various techniques were presented, and the scope and overall plan of the document was discussed. At the end of the workshop, attendees agreed on the scope and overall plan of the document. For each technique, a subgroup of individuals was then tasked with searching the literature for evidence on each of the techniques to address the following issues:

1. Background physiology of the technique
2. Logistics and procedural requirements:
 a. What equipment is needed/technical specifications
 b. What technical data are gathered/presented/available
 c. Variability, including interrater/intrarater, repeatability within/between occasions
3. Feasibility:
 a. Availability of commercial equipment/approximate costs
 b. How long do measurements take to obtain?
 c. Any risks to patient/Which patients are suitable/unsuitable?
 d. Ease of interpretation/training required
4. Existing published data:
 a. Reference data
 b. Data in disease conditions outside NICU/PICU
 c. Research studies to date in NICU/PICU
5. Clinical Indications based on published data

The ATS/ERS Evaluation of Respiratory Mechanics and Function in the Pediatric and Neonatal Intensive Care Units writing group was created, consisting of working groups for each of the physiologic parameters to be evaluated. Each working group was charged with performing a comprehensive literature search of standardized content for its specific lung function test, including background physiology, procedural requirements, procedural feasibility in a clinical setting, and existing published data with possible clinical indications.

Thorough literature searches were performed on multiple occasions up to finalization of the Workshop Report by the members of the subgroups using the following databases: MEDLINE, PubMed, and EMBASE. Initial searches and topic reviews by the individual subgroup/section authors were often done with the aid of medical librarians at each author’s individual academic institution. Studies and reports relevant to the subgroup’s assigned physiologic technique were selected, and reference lists of identified studies were further perused for additional relevant studies.

Subsequent follow-on meetings were held at ERS 2011 and ATS 2012, at which each subgroup presented its findings, which were then collated and discussed. Further work was done at these workshops to address overarching issues of topic relevance, study methodology, outcome measures, and clinical applicability. Table 1 is a checklist summarizing the methods used. Conflicts of interest were disclosed, vetted, and managed in accordance with ATS policy and procedures. The Workshop Report was written by the co-chairs (P.C.S., S.P.-C., and S.C.R.) then modified with detailed feedback from the workshop participants. The online supplement consists of the detailed sections on individual techniques, written by the participant subgroups and then collated and edited by the co-chairs.

Measurement Techniques

The measurement techniques are described briefly for the clinician. The online supplement includes detailed sections on each reviewed technique and references.

Dynamic/Passive Mechanics

These techniques use classical mechanics to derive measures of the resistance and compliance of the lung or the entire respiratory system (i.e., including chest wall). Airflow is measured at the airway opening (usually endotracheal tube or facemask) using a pneumotachometer or ultrasonic flowmeter and integrated to give volume changes. The pressure driving airflow (the driving pressure) is estimated in a variety of ways. In dynamic mechanics, the driving pressure is measured continuously. For the spontaneously breathing child, driving pressure is generated by respiratory muscles creating a negative intrapleural pressure; this is measured via a catheter, balloon, or transducer in the midesophagus. For the ventilated and paralyzed child, the driving pressure is positive pressure at the airway opening, measured within the ventilator circuit as close as possible to the airway opening. Flow and volume are measured continuously and simultaneously to driving pressure.

For passive mechanics, driving pressure is measured during a brief airway occlusion, when respiratory muscles are relaxed (Hering-Breuer reflex) and pressures equilibrate across the airways during a period of no flow. Flow and volume are measured during the passive expiration (respiratory muscles still relaxed) that follows release of the occlusion.

In both dynamic and passive techniques, these values of flow, volume, and driving pressure are used to solve the equation of motion of the lung and yield values for compliance and resistance. For situations where airflow cannot be measured accurately, a variant of dynamic mechanics uses esophageal pressure measurements alone to derive measures of respiratory effort (e.g., amplitude or amplitude-time...
Forced Oscillation Technique

Forced oscillation technique (FOT) is an alternative technique for measuring respiratory system mechanics, in which a high-frequency driving pressure waveform is superimposed on the tidal (spontaneous or ventilator-driven) breathing pattern. The resulting high-frequency changes in flow and volume are separated out from the tidal flow/volume changes by signal processing. Pressure, flow, and volume changes are then used to calculate the resistance and reactance (and the combined measure, impedance) of the respiratory system at the imposed frequency. The technique is also performed at low frequencies during apneic pauses (essentially equivalent to dynamic mechanics as described above in the ventilated, paralyzed child). Alternatively, measurements can be made during high-frequency oscillatory ventilation, when the imposed high-frequency waveform temporarily replaces the ventilator waveform.

Ventilator Graphics

Ventilator graphics refers to the real-time display of continuous measurements of pressure, flow, and volume change on a screen at the bedside, either as time-based plots or as XY loops (e.g., flow–volume or pressure–volume). Rather than yielding numerical variables, pattern recognition is used to identify specific pathophysiological situations—for example, small airway obstruction (flow–volume loop) or excessive inflation pressure (pressure–volume loop). In conjunction with ventilator graphics, additional information can be obtained by plotting esophageal pressures (obtained by esophageal manometry), as mentioned in Tables 2 and 3.

Volumetric Capnography

Capnography describes the continuous display of carbon dioxide (CO₂) partial pressure in expired breath—widely used clinically in, for example, end-tidal CO₂ monitoring. Volumetric capnography combines end-tidal CO₂ monitoring with continuous flow (and hence volume) measurement, to provide a continuous measure and visual display of quantity of CO₂ eliminated and how it relates to expired breath volume. The measurements are used to estimate anatomical and physiological dead space and ventilation effectiveness, whereas pattern recognition of displayed waveforms is used to identify pathophysiologcal problems (e.g., airway distension due to excessive positive end-expiratory pressure, esophageal intubation).

Inert Gas Washout

This technique measures how an inert gas marker (artificially introduced [SF₆, He] or naturally present [N₂]) is eliminated or “washed out” from the lungs. The measurement applicable to PICU and NICU is performed during a period of tidal breathing (ventilator or spontaneous) and is hence called multiple breath washout (MBW). For SF₆ or He, the gas is first washed into the lungs by adding it to the inspired air. For N₂, the gas already present in the lungs is washed out by breathing 100% O₂. Inert gas concentration in expired breath is measured continuously using a mass spectrometer or ultrasonic flowmeter, and expiratory airflow and/or volume are measured using a pneumotachometer or ultrasonic flowmeter. The total inert gas volume washed out allows the measurement of lung volume (FRC), and the rate at which it is washed out yields measures of gas mixing efficiency (e.g., lung clearance index), a marker of ventilation inhomogeneity that is sensitive to small airway disease.

Electrical Impedance Tomography

Electrical impedance tomography (EIT) is a radiation-free dynamic imaging technique that transmits very small alternating...
Table 2. Clinical issues that could be addressed by respiratory function measurements in the pediatric and neonatal intensive care units

<table>
<thead>
<tr>
<th>Clinical Issue</th>
<th>Specific Clinical Question</th>
<th>Physiological Parameters</th>
<th>Measurement Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature of disease?</td>
<td>Obstructive, restrictive, or mixed lung disease?</td>
<td>Lung/respiratory system compliance, resistance, and impedance</td>
<td>Dynamic/passive mechanics</td>
</tr>
<tr>
<td></td>
<td>Lung disease diffuse or patchy, large or small airways?</td>
<td>Lung volume</td>
<td>FOT</td>
</tr>
<tr>
<td></td>
<td>Regional mismatching of ventilation and perfusion?</td>
<td>Regional distribution of ventilation, perfusion</td>
<td>Inert gas washout</td>
</tr>
<tr>
<td></td>
<td>Chest wall or respiratory muscle problems?</td>
<td>Chest wall compliance</td>
<td>Capnography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regional distribution of ventilation, perfusion</td>
<td>EIT</td>
</tr>
<tr>
<td>Optimizing respiratory support, minimizing ventilator-associated lung injury?</td>
<td>On optimal portion of the pressure-volume curve?</td>
<td>Pressure-volume curve</td>
<td>Dynamic mechanics</td>
</tr>
<tr>
<td></td>
<td>At optimal lung volume for pulmonary blood flow and V/Q matching?</td>
<td>Regional distribution of ventilation, perfusion</td>
<td>Vent graphics</td>
</tr>
<tr>
<td></td>
<td>Minimizing patient-ventilator dyssynchrony?</td>
<td>Gas exchange efficiency</td>
<td>EIT</td>
</tr>
<tr>
<td></td>
<td>Inspiratory time/flow sufficient to deliver adequate tidal volume?</td>
<td>Time-based flow and volume waveforms</td>
<td>EIT</td>
</tr>
<tr>
<td></td>
<td>Expiratory time sufficient to prevent breath-stacking/auto-PEEP?</td>
<td>Measurement of respiratory time constant</td>
<td>EIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time-based flow and volume waveforms with expiratory hold</td>
<td>EIT</td>
</tr>
<tr>
<td>Effect of therapeutic interventions?</td>
<td>Suctioning, positioning, chest physiotherapy?</td>
<td>Lung/respiratory system compliance, resistance and impedance</td>
<td>Dynamic/passive mechanics</td>
</tr>
<tr>
<td></td>
<td>Medications (e.g., mucolytics, bronchodilators, surfactant, steroids)?</td>
<td>Lung volume</td>
<td>Vent graphics</td>
</tr>
<tr>
<td></td>
<td>Changes in ventilator settings?</td>
<td>Gas exchange efficiency</td>
<td>EIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lung/respiratory system compliance, resistance, and impedance changes</td>
<td>EIT</td>
</tr>
<tr>
<td>Ready to wean?</td>
<td>Work of breathing too high?</td>
<td>Resistance, compliance, impedance, work of breathing</td>
<td>Dynamic/passive mechanics</td>
</tr>
<tr>
<td></td>
<td>Respiratory muscle strength too poor?</td>
<td>Esophageal pressure-rate product</td>
<td>Esophageal manometry</td>
</tr>
<tr>
<td></td>
<td>Respiratory drive too poor, inconsistent, or uncoordinated?</td>
<td>Thoracoabdominal asynchrony</td>
<td>Chest wall measurements</td>
</tr>
<tr>
<td></td>
<td>Respiratory dead space a problem?</td>
<td>P0.1</td>
<td>Occlusion pressures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pmax</td>
<td>Occlusion pressures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physiological dead space</td>
<td>Capnography (volumetric)</td>
</tr>
</tbody>
</table>

Definition of abbreviations: EIT = electrical impedance tomography; FOT = forced oscillation technique; P0.1 = negative pressure developed after 100 ms of occlusion; PEEP = positive end-expiratory pressure; Pmax = maximum inspiratory pressure.
electrical currents through the lungs from a belt-like array of electrical transmitter/receivers around the outside of the chest wall. The resulting voltages are used to construct a two-dimensional “slice” showing the distribution of electrical impedance throughout the chest at that level. Because the major factor in determining impedance in any area of lung tissue is the air content, the image maps out the relative distribution of air in the lungs at that time point. By taking repeated scans (up to 50 per second) during tidal breathing, a measure of total and regional ventilation of the lungs is obtained. Although absolute lung volume is not measured, relative changes in end-expiratory volume are estimated from the cross-section sampled.

Chest Wall Measurements

Chest wall measurement techniques involve assessment of tidal breathing by estimating change in volume of the chest at the chest wall, rather than by airflow at the airway opening. Chest wall measurements are useful in the sick but nonintubated child, in whom measuring flow at the airway opening is impracticable. The best known technique is respiratory inductance plethysmography, which measures changes in the cross-sectional area of the chest by changes in inductance in coils bearing weak current around the chest and abdomen. As well as giving a measure of changes in overall tidal volume, the time lag between abdominal and chest excursions (thoracoabdominal asynchrony [TAA]) is used as an indirect measure of work of breathing. A number of newer chest wall techniques, using for example electromagnetic inductance or light reflection, are now available.

Occlusion Pressures

Occlusion pressure techniques focus on the respiratory muscles and central respiratory drive rather than respiratory mechanics, lung volumes, and gas exchange. Pressure at the airway opening during a complete airway occlusion will tend to equilibrate with alveolar pressure. The negative pressure developed after 100 ms of occlusion ($P_{0.1}$) is a measure of respiratory drive, because it reflects the alveolar pressure that would have been developed by the respiratory muscles in an unobstructed breath (100 ms is too short a time to allow a response to occlusion). By contrast, maximum inspiratory pressure (P_{max}) is the maximum negative pressure measured at the airway opening during an occlusion sustained for a number of breaths (usually five to seven) and is used to estimate respiratory muscle strength. In the cooperative child, maximal effort is requested; in the infant it is inferred. Table 2 summarizes the potential of each technique for assessing important clinical issues in the PICU or NICU.

Discussion and Future Directions

The respiratory function techniques reviewed in this document could aid in the clinical management of individual patients in the PICU and NICU setting. Specifically, they could potentially help pediatric and neonatal intensive care clinicians to identify the nature of respiratory disease, optimize respiratory support to minimize ventilator-associated lung injury, assess the effect of therapeutic interventions, and assess readiness to wean from ventilatory support. Commercial equipment is now available for most of the aforementioned techniques; measurements are obtained quickly to avoid undue interference with clinical care, and patient risks are minimal.

The future impact in the PICU and NICU of the various techniques presented depends on a few key questions: How invasive is the technique, and does it interfere with normal care? Is there commercially available equipment, at a price affordable to most units? Can the procedure be easily taught to staff? Can it be used easily in the intubated pediatric patient to provide continuous data? Does it improve clinical outcomes? Based on these criteria, the most likely bedside clinical tools in the near future are: dynamic and passive respiratory mechanics, volumetric capnography, EIT, MBW, and chest wall measurements. To date, the volumetric capnogram has been used successfully in the measurement of anatomical dead space, pulmonary capillary perfusion, and effective ventilation (15). Randomized controlled trials evaluating routine use of capnography are needed to evaluate associated potential improvements in patient care.

Further technological development of EIT hardware and software and availability of commercial EIT devices at a reasonable cost will likely enhance the future clinical use of EIT. The practicability of EIT examinations will improve with development of electrode belts for the smallest neonatal patients and by increased robustness of the devices against electrical interference. It is crucial that EIT-derived indices relevant for clinical decision making are available online to clinicians. Following these necessary steps, EIT has the potential to be of great value in the NICU and PICU as a bedside, noninvasive tool to monitor changes in the distribution of lung volume and ventilation, especially in those infants and children receiving respiratory support.

Potential future clinical indications of MBW in the PICU and NICU are dependent on widespread availability of suitable portable low dead space equipment and the evolving availability of MBW as an integrated option within ventilators and circuits. An additional consideration is the potential impact of leak around uncuffed endotracheal tubes on some of these measurements. This remains a significant issue for many of these measures in the NICU, especially for measures of lung volume. This issue can be minimized with the use of cuffed endotracheal tubes for the purpose of the measurements of pulmonary mechanics but may impact standard clinical practice.

In addition, true “normal” reference values for FRC in ventilated patients in the PICU and NICU do not exist and will require a large series of measurements across a range of gestations and postnatal ages using standardized conditions. Equipment needs to be able to cope with the warm, humidified environment of a ventilator circuit and ideally with rapid respiratory rates. Measurements during high-frequency oscillatory ventilation represent a particular technical challenge but have been achieved for FOT, EIT (16), and chest wall measurements (17). Adaptation of techniques for bedside assessment of the alveolar capillary membrane surface such as the diffusing capacity and the diffusing coefficient may facilitate noninvasive measures of the pulmonary circulation.
Table 3. Technical issues for pulmonary function testing techniques in the neonatal and pediatric intensive care units

<table>
<thead>
<tr>
<th>Question</th>
<th>Dynamic/ Passive Mechanics</th>
<th>Forced Deflation</th>
<th>FOT</th>
<th>Graphics</th>
<th>Capnography</th>
<th>Inert Gas Washout</th>
<th>EIT</th>
<th>Chest Wall Measurements</th>
<th>Occlusion Pressures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistics</td>
<td>What equipment is needed?</td>
<td>Low dead space flowmeter, airway; with or without esophageal pressure transducer</td>
<td>Flowmeter, timed positive and negative pressure sources, 3-way valve</td>
<td>Low dead space oscillatory signal generator; pressure transducer and flowmeter</td>
<td>Mechanical ventilator or stand-alone respiratory monitor with graphics software</td>
<td>Low dead space sidestream or mainstream capnograph</td>
<td>Low dead space flowmeter and rapid response gas analyzer</td>
<td>Electrode array, ET hardware and analysis software</td>
<td>Inductance bands or alternative (e.g., magnetic inductance, light reflection)</td>
</tr>
<tr>
<td>Logistics What is measured?</td>
<td>Dynamic/passive resistance and compliance, of lungs or respiratory system</td>
<td>FVC, maximal flows at specific volumes</td>
<td>Resistance and reactance of respiratory system</td>
<td>Airway pressure-time, flow-time, and volume-time plots; airway pressure-volume and flow-volume loops (esophageal pressure)</td>
<td>End-tidal partial pressure of CO\textsubscript{2}; partial pressure of CO\textsubscript{2} exhaled over time; quantity of CO\textsubscript{2} as a function of exhaled gas volume</td>
<td>FRC, lung clearance index, other indices of ventilation distribution</td>
<td>Dynamic cross-sectional scans of regional ventilation</td>
<td>Quantitative or semiquantitative tidal volumes and flows; thoracoabdominal asynchrony</td>
<td>P\textsubscript{0.1} P\textsubscript{max}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feasibility</th>
<th>Availability of commercial equipment</th>
<th>Available</th>
<th>Available (outside United States)</th>
<th>Not available</th>
<th>Available</th>
<th>Available</th>
<th>Available</th>
<th>Available</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>How long do measurements take to obtain?</td>
<td>15 min</td>
<td>15 min</td>
<td>10 min</td>
<td>Continuous data</td>
<td>Continuous data</td>
<td>10 min (3 × 3-min tests)</td>
<td>Continuous data</td>
<td>Continuous data</td>
<td>10 min</td>
</tr>
<tr>
<td>Risks to patient?</td>
<td>Minimal</td>
<td>Low</td>
<td>Minimal</td>
<td>Minimal</td>
<td>Minimal</td>
<td>Minimal</td>
<td>Minimal</td>
<td>Minimal</td>
<td>Minimal</td>
</tr>
<tr>
<td>Which patients are unsuitable?</td>
<td>Leak > 10% at airway opening (20); strong respiratory drive (passive mechanics)</td>
<td>Leak > 10%, unintubated patients; most patients with uncuffed ETT's</td>
<td>Leak > 10%</td>
<td>Leak > 10%</td>
<td>Leak > 10%</td>
<td>Birth weight < 600 g; Fragile or broken skin on chest; chest tube</td>
<td>None</td>
<td>None</td>
<td>Leak > 10%, muscle relaxants.</td>
</tr>
</tbody>
</table>

Studies in NICU/PICU
- Using technique as outcome measure in trial: Yes (68–94) Yes (95–99) Yes (100) Yes (101, 102) Yes (103, 104) Yes (105–111) No No Yes (112)
- Using technique to guide clinical management: Yes (113–115) No Yes (116–118) Yes (119–121) Yes (15, 122, 123) No No Yes (18) No

Definition of abbreviations: EIT = electrical impedance tomography; ETT = endotracheal tube; FOT = forced oscillation technique; NICU = neonatal intensive care unit; P\textsubscript{0.1} = negative pressure developed after 100 ms of occlusion; PICU = pediatric intensive care unit; P\textsubscript{max} = maximum inspiratory pressure.
and help achieve optimal balance between ventilation and perfusion. In the future, this would be an amazing technical advance for the population of patients in NICU and PICU.

For chest wall measures such as TAA, normal values for phase angles in full-term infants and children have been reported independent of sleep state (18, 19), but further studies will be needed to explore whether the integration of new and automated analysis procedures will increase the clinical potential of TAA monitoring in the intensive care unit. Although there are some data on TAA in preterm infants, there are still inadequate normative data for respiratory inductance plethysmography measures in this population. Thus, we first require preterm normative data before studying preterm infants in the acute phases of lung injury.

Finally, it should be stressed that more research is warranted for each technique before issuing detailed recommendations on specific ages, disease entities, or outcome measures associated with testing. There is a requirement to develop standardized procedures/protocols, minimum standards for equipment, and ideally normative data to differentiate normal from disease states before incorporation of a technique into our daily clinical practice. Nonetheless, there is already a body of experience with these techniques as research tools, most are noninvasive, and they can provide additional data not easily obtained otherwise.

Proposed Areas of Future Research Collaboration
- For all techniques, establish “normal” reference values using current commercial equipment in ventilated patients (e.g., studies of surgical patients without respiratory disease/heart or abdominal surgery).
- Conduct pre- and postintervention studies (surfactant, altered ventilation strategy, mucolytics, etc.) studying effect on dead space using capnography and MBW (FRC).
- Conduct randomized trials to assess if knowledge of/discussion of routine measures of respiratory mechanics affects patient outcomes in the PICU and NICU, such as length of mechanical ventilation and/or length of stay.
- Conduct randomized controlled trial of patients in the PICU to evaluate the impact of volumetric capnography on length of ventilation, length of stay, and cost-effectiveness.
- Work with ventilator manufacturers to incorporate appropriate measurement and display of resistance, compliance, and volumetric capnography in commercial ventilators for the PICU and NICU.
- Measure oscillation mechanics during mechanical ventilation in a large group of patients in the PICU.
- Establish clinical protocols for the reviewed techniques and rigorous models for data analysis.
- Study whether the use of EIT can shorten time to weaning from ventilation and minimize lung injury.

This official statement was prepared by the ATS/ERS Evaluation of Respiratory Mechanics and Function in the Pediatric and Neonatal Intensive Care Units writing group.

Members of the committee:
Stacey Peterson-Carmichael, M.D., (Co-Chair)
Paul C. Seddon, M.B. Ch.B., (Co-Chair)
Ira M. Cohen, M.D.
Inez Freidichs, M.D., Ph.D.
Graham L. Hall, Ph.D.
Jürg Hammer, M.D.
Zoltan Hartos, Ph.D., D.Sc.
Anton van Kaam, M.D., Ph.D.
Ondy T. McEvoy, M.D.
Christopher J. L. Novith, M.D.
J. Jane Pillow, Ph.D.
Gerrardo F. Rafferty, Ph.D.
Margaret Rosenfeld, M.D., M.P.H.
Janet Stocks, Ph.D.
Sarah C. Randanathan, M.B. Ch.B., Ph.D.

References

37 Farré R, Ferrer M, Rotger M, Navajas D. Servocontrolled generator to measure respiratory impedance from 0.25 to 25 Hz in ventilated patients at different PEEP levels. *Eur Respir J* 1995;8:1222–1227.

