Background: Interventions that lead to earlier liberation from mechanical ventilation can improve patient outcomes. This guideline, a collaborative effort between the American Thoracic Society and the American College of Chest Physicians, provides evidence-based recommendations to optimize liberation from mechanical ventilation in critically ill adults.

Methods: Two methodologists performed evidence syntheses to summarize available evidence relevant to key questions about liberation from mechanical ventilation. The methodologists appraised the certainty in the evidence (i.e., the quality of evidence) using the Grading of Recommendations, Assessment, Development, and Evaluation approach and summarized the results in evidence profiles. The guideline panel then formulated recommendations after considering the balance of desirable consequences (benefits) versus undesirable consequences (burdens, adverse effects, and costs), the certainty in the evidence, and the feasibility and acceptability of various interventions. Recommendations were rated as strong or conditional.

Results: The guideline panel made four conditional recommendations related to rehabilitation protocols, ventilator liberation protocols, and cuff leak tests. The recommendations were for acutely hospitalized adults mechanically ventilated for more than 24 hours to receive protocolized rehabilitation directed toward early mobilization, be managed with a ventilator liberation protocol, be assessed with a cuff leak test if they meet extubation criteria but are deemed high risk for postextubation stridor, and be administered systemic steroids for at least 4 hours before extubation if they fail the cuff leak test.

Conclusions: The American Thoracic Society/American College of Chest Physicians recommendations are intended to support healthcare professionals in their decisions related to liberating critically ill adults from mechanical ventilation.
Summary of Recommendations

1. For acutely hospitalized adults who have been mechanically ventilated for more than 24 hours, we suggest protocolized rehabilitation directed toward early mobilization (conditional recommendation, low certainty in the evidence).

2. We suggest managing acutely hospitalized adults who have been mechanically ventilated for more than 24 hours with a ventilator liberation protocol (conditional recommendation, low certainty in the evidence).

3. We suggest performing a cuff leak test in mechanically ventilated adults who meet extubation criteria and are deemed high risk for postextubation stridor (conditional recommendation, very low certainty in the evidence).

4. For adults who have failed a cuff leak test but are otherwise ready for extubation, we suggest administering systemic steroids for at least 4 hours before extubation (conditional recommendation, moderate certainty in the evidence).

Introduction

Mechanical ventilation is a life-saving intervention. Because it is associated with complications, patients should be liberated from the ventilator as soon as the underlying cause that led to mechanical ventilation has sufficiently improved and the patient is able to sustain unassisted spontaneous breathing. In this clinical practice guideline, we provide evidence-based recommendations on the liberation of adults from invasive mechanical ventilation. In a collaborative effort between the American Thoracic Society (ATS) and the American College of Chest Physicians (CHEST), we conducted systematic reviews of the literature and used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to develop recommendations that answer the following questions:

1. Question 1: Should acutely hospitalized adults who have been mechanically ventilated for more than 24 hours be subjected to protocolized rehabilitation directed toward early mobilization or no protocolized attempts at early mobilization?

2. Question 2: Should acutely hospitalized adults who have been mechanically ventilated for more than 24 hours be managed with a ventilator liberation protocol or no protocol?

3. Question 3a: Should a cuff leak test be performed before extubation of mechanically ventilated adults?

4. Question 3b: Should systemic steroids be administered to adults who fail a cuff leak test before extubation?

The recommendations provided in this manuscript—and others published separately related to inspiratory pressure augmentation during spontaneous breathing trials, sedation protocols, and extubation to preventative noninvasive ventilation (1)—form the ATS/CHEST clinical practice guidelines on liberation from mechanical ventilation in critically ill adults. An executive summary outlining all recommendations is also available (2).

Methods

Expert Panel Composition and Conflict-of-Interest Management

The ATS Document Development and Implementation Committee, CHEST Professional Standards Committee, and CHEST Guidelines Oversight Committee (GOC) selected and approved the co-chairs of the guideline panel. The co-chairs identified potential panelists on the basis of their expertise in critical care medicine, particularly mechanical ventilation, sedation, or rehabilitation.

A committee of representatives from ATS and CHEST reviewed the invited panelists’ conflict-of-interest disclosures, statements of interest, and curricula vitae. Panelists determined to have no substantial conflicts of interest were approved, whereas those with potential intellectual and financial conflicts of interest that were considered manageable were “approved with management,” meaning that they were prohibited from participating in discussions or voting on recommendations in which they had substantial conflicts of interest. Three invited panelists were disqualified.
due to conflicts of interest deemed not manageable. A conflict-of-interest grid is included in the online supplement.

The ATS Document Development and Implementation Committee and CHEST GOC approved the composition of the final panel, which consisted of 20 voting members: 6 co-chairs, 7 pulmonary/critical care physicians, 4 critical care physicians, 1 critical care nurse/respiratory therapist, 1 critical care pharmacist, and 1 physical therapist. The panel worked with two methodologists, one of whom is also a critical care physician, who assessed the quality of the evidence and participated in discussions but did not vote on recommendations. Panels were divided into six working groups. Each group addressed one question, and each methodologist worked with three working groups.

Formulation of Key Questions and Outcome Prioritization

The co-chairs drafted key clinical questions in a PICO (Population, Intervention, Comparator, and Outcome) format. These PICO questions are intentionally presented in a sequence that reflects the order of their application when managing a mechanically ventilated patient in the ICU. They identified outcomes that might be affected by each of the interventions and rated the relative importance of the outcomes numerically (from 1 to 9), according to the GRADE approach’s three categories of outcomes for decision making: 1 through 3 indicate the outcome is not important for decision making; 4 through 6 indicate that the outcome is important for decision making; 7 through 9 indicate that the outcome is critical for decision making. We only assessed the evidence for outcomes whose average rating fell into the “critical” or “important” categories.

Systematic Literature Searches

After all panelists reviewed and approved the PICO questions, the panelists and methodologists finalized inclusion and exclusion criteria for studies to be selected as well as search terms to identify studies. The methodologists divided the PICO questions, and each systematically identified the relevant literature for their questions by searching Medline plus one or more of the following databases: Cochrane Library, EMBASE, or CINAHL. We did not mandate duplicate search or screening. We conducted literature searches using a combination of the National Library of Medicine’s medical subject headings (MeSH) and other keywords specific to each question. To capture as much of the literature pertaining to each topic as possible, we did not limit searches by language or publication date. We initially sought published systematic reviews relevant to the question and, if none were identified, sought randomized trials. If no randomized trials were found, we sought observational studies. If no observational studies were found, we sought large case series. Reference lists from selected studies were also searched, and additional papers were manually added to the search results. Searches were first performed in December 2014 and then updated periodically, most recently in May 2015. Additional details on the literature searches and the selection of studies can be found in the online supplement.

Study Selection and Data Extraction

The methodologists reviewed all publications retrieved from the literature searches for relevance, initially excluding some on the basis of their title and/or abstract. They then reviewed the full texts of publications that were not excluded by title or abstract, either including or excluding each. Finally, they extracted relevant data from each selected study and entered the data in structured data tables. We did not mandate duplicate data abstraction.

Metaanalyses

When data from individual studies were amenable to pooling or a previously published metaanalysis needed to be updated, we used the Cochrane Collaboration Review Manager, version 5.3 to pool the results across individual studies (3). We used a random-effects model and the method of DerSimonian and Laird to pool the individual estimates (4). We used relative risk (RR) to report the results for dichotomous outcomes and mean difference to report the results for continuous outcomes, each with an accompanying 95% confidence interval (CI). We assessed statistical heterogeneity of the pooled results using the I² and χ² tests, considering an I² value of greater than or equal to 50% or a χ² P < 0.05 to indicate significant heterogeneity. Results from the metaanalyses are provided in the evidence tables and online supplement.

Assessing Certainty in the Evidence

We used the GRADE approach to assess certainty in the estimated effects of each intervention on each outcome of interest (5). The methodologists assessed the risk of bias in all included studies, using the Cochrane Risk of Bias tool to assess risk of bias for randomized trials (6) and the Documentation and Appraisal Review Tool to assess the quality of systematic reviews (7). The methodologists created evidence profiles using the Guideline Development Tool (8), which categorized overall certainty in the evidence into one of four levels: high, moderate, low, or very low. Each level represents our certainty in the accuracy of the estimated effects for a specific intervention (Table 1). The panelists reviewed the evidence profiles and provided input and feedback.

Recommendations

On the basis of the evidence profiles, the panel developed recommendations to answer each PICO question. We used the Evidence-to-Decision (EtD) framework to guide the discussions that led to each recommendation (8). In the EtD framework, panel members made decisions regarding the balance between desirable consequences (benefits) and undesirable

<table>
<thead>
<tr>
<th>Table 1. Certainty in the Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
</tr>
<tr>
<td>High</td>
</tr>
<tr>
<td>Moderate</td>
</tr>
<tr>
<td>Low</td>
</tr>
<tr>
<td>Very low</td>
</tr>
</tbody>
</table>
The implications of the recommendations will differ depending on the stakeholders involved. Here is a summary of how the recommendations might be adapted for different groups:

Table 2. Implications of Recommendations by Stakeholders

<table>
<thead>
<tr>
<th>Implications for</th>
<th>Strong Recommendation</th>
<th>Conditional Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>Most individuals in this situation would want the recommended course of action and only a small proportion would not.</td>
<td>The majority of individuals in this situation would want the suggested course of action, but many would not.</td>
</tr>
<tr>
<td>Clinicians</td>
<td>Most individuals should receive the recommended course of action. Adherence to this recommendation according to the guideline could be used as a quality criterion or performance indicator. Formal decision aids are not likely to be needed to help individuals make decisions consistent with their values and preferences.</td>
<td>Recognize that different choices will be appropriate for different patients, and that you must help each patient arrive at a management decision consistent with her or his values and preferences. Decision aids may well be useful helping individuals making decisions consistent with their values and preferences. Clinicians should expect to spend more time with patients when working toward a decision.</td>
</tr>
<tr>
<td>Policy makers</td>
<td>The recommendation can be adapted as policy in most situations, including for the use as performance indicators.</td>
<td>Policy making will require substantial debates and involvement of many stakeholders. Policies are also more likely to vary between regions. Performance indicators would have to focus on the fact that adequate deliberation about the management options has taken place.</td>
</tr>
</tbody>
</table>

Consensus Development

The guideline panel met during multiple online webinars to discuss the evidence profiles and EtD framework and to develop recommendations for each PICO question. Because all panel members were not able to attend every webinar, all panel members reviewed and voted to approve or modify preliminary recommendations using an online anonymous voting survey conducted after the online webinars were completed. This process allowed us to gather feedback from all panel members, including those unable to participate by webinars, and ultimately reach consensus on each recommendation. In the online surveys, panelists indicated their level of agreement on each recommendation using a 5-point Likert scale derived from the GRADE grid (10), and they could provide feedback on each preliminary recommendation. Panelists with potential conflicts of interest requiring management were not allowed to vote on the preliminary recommendation(s) for which they had a potential conflict of interest. A recommendation was made only after at least 75% of panel members voted on that recommendation and at least 80% of those voting selected “pass.” Any recommendations that did not pass these standards were revised by the panel on the basis of the feedback, and a new survey that incorporated those revisions was distributed.

Manuscript Preparation

Per prior agreement by ATS and CHEST, we prepared three manuscripts: an executive summary that describes the guideline development process and provides the recommendations for all six PICO questions (2) and two manuscripts that each provide the evidence syntheses, rationale, and recommendations for three of the six PICO questions (1). All members of the panel reviewed each of the three manuscripts; comments were addressed by the co-chairs, and the revised manuscripts were redistributed to the full panel for further review. Once the manuscripts were approved by the full panel, they were submitted simultaneously to ATS and CHEST for independent peer review.

Peer Review Process

For ATS, the document was reviewed by four content experts and a guideline methodology expert who did not participate in the preparation of the guidelines. For CHEST, the document was reviewed by individuals from the GOC, the Board of Regents, and peer reviewers assigned by the Chest journal. All reviewers assessed both the content and methods, including consistency, accuracy, and completeness. Comments from the ATS and CHEST reviewers were collated into a single decision letter and sent to the co-chairs. The manuscripts were subsequently revised by the panel according to feedback received from the peer reviewers. After several cycles of review and revisions, the manuscripts were deemed satisfactory and sent to the ATS leadership (Executive Committee and Board of Directors) and CHEST leadership (GOC and Board of Regents) for further review and final approval.

Results

Question 1: Should Acutely Hospitalized Adults Who Have Been Mechanically Ventilated for More Than 24 Hours Be Subjected to Protocolized Rehabilitation Directed toward Early Mobilization or No Protocolized Attempts at Early Mobilization?

Background. In these guidelines, we use the term “rehabilitation” to describe any program directed toward mobilization, regardless of whether the program is

1Questions 1, 2, 3a, and 3b in this document correspond to Questions 4, 5, 6a, and 6b in the Executive Summary.
implemented by a nurse, physical therapist, or other clinician. Studies examining ICU-initiated early rehabilitation have become increasingly prominent in the literature. Conceptually, early rehabilitation efforts in the ICU are supported by three observations. First, bedrest during critical illness negatively affects the musculoskeletal, cardiovascular, respiratory, and immune systems, thereby slowing recovery (11, 12). Second, immobility-related complications (e.g., pressure ulcers, venous thromboembolism) are common in ICU patients (13, 14). Finally, profound weakness is common among ICU survivors (15, 16). ICU-acquired weakness often persists after hospital discharge and can remain disruptive to normal life function for months to years (17–22). Indeed, weakness is associated with reduced post-ICU survival (23, 24).

Evidence regarding ICU-initiated early rehabilitation has progressed during the past 15 years from quality improvement projects and case reports to observational studies and randomized trials, leading to professional society recommendations (17–19). Clinical discussions have similarly progressed from whether it is safe for mechanically ventilated patients to receive early rehabilitation to the feasibility, approaches, benefits, and safety of ICU-initiated early rehabilitation. New practice paradigms suggest that there might be an optimal window during which to deliver ICU-initiated early rehabilitation, because muscle loss is rapid and early in the ICU setting (25), and mobility programs beginning after discharge from the ICU appear to have limited impact on mitigating weakness and functional decline (26). Despite accumulating evidence and growing acceptance, there remains great equipoise regarding ICU-initiated early rehabilitation (27–30), with controversy as to whether there is sufficient patient-level efficacy to justify the in-hospital costs and burdens of ICU early rehabilitation programs.

Summary of evidence. Our search identified three systematic reviews (31–33), which included four trials (34–37) that enrolled adults who were mechanically ventilated in the ICU for more than 24 hours, and compared any intervention directed toward early mobilization with usual care. No additional relevant trials were identified that had not been included in the systematic reviews. Among the trials, the duration of mechanical ventilation before enrollment and the intervention varied. Durations of mechanical ventilation included less than 72 hours (37), 72 hours or longer (35), five days or longer (36), and seven days or longer (34). Interventions included cycling exercise 5 days per week (34); sitting in a chair for 30 to 120 minutes 3 days per week (35); marching in place, moving from a sitting to standing position, extremity activity, and active resistance movements (36); and daily sedative interruption followed by range of motion exercises, bed mobility, functional activities, and sitting, standing, or walking (37). These four randomized trials informed the guideline panel’s judgments.

The guideline panel identified a priori nine outcomes as “critical” to guide the formulation of treatment recommendations. The critical outcomes included mortality, ICU length of stay, ability to walk at ICU discharge, ability to walk at hospital discharge, 6-minute-walk distance at hospital discharge, duration of mechanical ventilation, ventilator-free days, serious adverse events, and arrhythmias.

When the data were pooled via metaanalysis, patients who had received an intervention directed toward early mobilization had a shorter duration of mechanical ventilation (mean difference, 2.7 fewer days; 95% CI, 1.19–4.21) and were more likely to be able to walk at hospital discharge (64.0% vs. 41.4%; RR, 1.56; 95% CI, 1.15–2.10) (Table 3). There were no meaningful differences in mortality, ICU length of stay, ability to walk at ICU discharge, 6-minute-walk distance, or ventilator-free days. The trials did not report sufficient details to assess adverse events. However, a large case series reported serious adverse event rates, which were low for all adverse events (6.5 events per 1,000 physical therapy sessions) and for arrhythmias (1.9 events per 1,000 physical therapy sessions) (38).

The evidence has several important limitations. It was not possible to blind patients or clinicians to treatment allocation. For all outcomes, the number of patients and events was small, leading to imprecise estimates of treatment effects. The estimated effect on ICU length of stay was inconsistent across studies. And, we were not able to estimate the risk of serious adverse events per patient during their ICU stay due to insufficient reporting in the randomized trials. As a result, the overall certainty in the evidence was low.

Panel judgments. Despite the limitations of the evidence, the guideline panel judged the desirable consequences of rehabilitation directed toward early mobilization to outweigh the undesirable consequences. The desirable consequences considered by the panel included a shorter duration of mechanical ventilation and increased likelihood of being able to walk at hospital discharge. The panel considered the 2.7-day reduction in the duration of mechanical ventilation to be particularly large relative to the 8-day average duration of mechanical ventilation in the four trials. The primary undesirable consequence considered by the guideline panel was altered resource requirements, because implementation may require that human resources be allocated to rehabilitation. A cost analysis using assumptions based on published literature estimated that protocolized rehabilitation in the ICU can result in a cost saving per patient (39). Two randomized trials published after our evidence synthesis found no difference in outcomes among patients who received intensive rehabilitation compared with those who received standard rehabilitation (40, 41).

The panel’s votes are summarized in Table E1 and judgments are summarized in Table E2 in the online supplement.

ATS/CHEST recommendation. For acutely hospitalized adults who have been mechanically ventilated for more than 24 hours, we suggest protocolized rehabilitation directed toward early mobilization (conditional recommendation, low certainty in the evidence).

Remarks. There is insufficient evidence to recommend any rehabilitation protocol over another.

Values and preferences. This recommendation places a high value on reducing the duration of mechanical ventilation and increasing the likelihood of being able to walk at discharge and a lower value on cost and resource use.

Question 2: Should Acutely Hospitalized Adults Who Have Been Mechanically Ventilated for More Than 24 Hours Be Managed with a Ventilator Liberation Protocol or No Protocol?

Background. As the underlying cause of respiratory failure is treated and improves, ICU practitioners can hasten successful
Table 3. Evidence Profile for the Comparison of Protocolized Rehabilitation Aimed at Early Mobilization versus No Protocolized Rehabilitation

<table>
<thead>
<tr>
<th>Quality Assessment</th>
<th>No. of Patients</th>
<th>Effect</th>
<th>Other Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of studies</td>
<td>Study Design</td>
<td>Risk of Bias</td>
<td>Inconsistency</td>
</tr>
<tr>
<td>Mortality 3 Randomized trials</td>
<td>Not serious*</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
<tr>
<td>ICU length of stay, d 4 Randomized trials</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Serious‡</td>
</tr>
<tr>
<td>Ability to walk at ICU discharge (independent at ICU discharge) 1 Randomized trials</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
<tr>
<td>Ability to walk at hospital discharge (independent at hospital discharge) 2 Randomized trials</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
<tr>
<td>6-min-walk distance at discharge, m 1 Randomized trials</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
<tr>
<td>Duration of mechanical ventilation, d 1 Randomized trials</td>
<td>Serious**</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
<tr>
<td>Ventilator-free days 1 Randomized trials</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Not serious</td>
</tr>
<tr>
<td>Serious adverse events 1 Case series</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Serious adverse events (arrhythmia) 1 Case series</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Definition of abbreviations: CI = confidence interval; MD = mean difference; N/A = not applicable; RR = relative risk.

Data from References 34–37.

*Although studies were unblinded, we did not lower the quality of evidence for risk of bias because all studies used proper randomization, and mortality is unlikely to be affected by lack of blinding.

†We downgraded by one level for imprecision because the ends of the CI lead to opposite courses of action.

‡We downgraded by one level for inconsistency; I² = 52%.

§Although we could not reliably assess for publication bias due to small number of studies, we did not downgrade.

¶We downgraded by two levels for imprecision because the ends of the CI lead to opposite courses of action and the number of events was small.

*We downgraded by one level for risk of bias due to lack of blinding.
liberation from the ventilator by offering the patient opportunities to demonstrate sustainable ventilation and oxygenation without support from the mechanical ventilator. Indeed, multiple randomized trials have shown that daily use of spontaneous breathing trials (SBTs) to identify patients ready for liberation is safe and reduces time to extubation compared with approaches that gradually wean ventilator support (e.g., systematically reducing inspiratory pressure in pressure-support ventilation or the mandatory ventilator rate in synchronized intermittent mandatory ventilation). Ventilator liberation protocols have been designed to systematically apply such evidence to practice. These protocols, which are usually implemented by respiratory care providers and/or nurses but have also been computer driven in some cases, are designed to reduce variability in the assessment of readiness for liberation.

Summary of evidence. Before searching for relevant evidence, the guideline panel defined a “ventilator liberation protocol” as protocol-guided efforts to identify a patient’s readiness for liberation from invasive mechanical ventilation. We also defined the patient population of interest to be acutely hospitalized adults mechanically ventilated for more than 24 hours; our rationale was that we believed that the potential benefit of ventilator liberation protocols would be greatest among this population. Our literature search identified a recent Cochrane Database systematic review (42), which included 17 trials comparing ventilator liberation protocols with no protocol (i.e., physician judgment) among critically ill adults receiving invasive mechanical ventilation; 15 were randomized trials (43–57) and 2 were quasi-randomized trials (i.e., allocation by odd/even hospital number) (58, 59). In most trials, the protocols were conducted by respiratory therapists or nurses, and extubation was approved by a physician. Our literature search did not identify any additional relevant trials not included in the Cochrane review.

Seven trials required that participants be mechanically ventilated more than 24 hours before enrollment (48, 52–54, 57–59), one required more than 48 hours (55), two required more than 12 hours (51, 56), and seven trials did not describe a specific duration of ventilation before enrollment (43–47, 49, 50). Most trials enrolled patients in mixed ICUs (45, 46, 48, 50, 52, 57), although five included only medical ICU patients (43, 44, 55, 56, 58), three included only surgical ICU patients (49, 53, 54), and three enrolled only neurological ICU patients (47, 51, 57). The protocols studied were computer-driven protocols in 4 trials (43, 52, 53, 55) and personnel driven in 13 trials. Among the latter, eight were SBT-based protocols (44, 47, 48, 50, 51, 54, 58, 59), four were stepwise-reduction protocols (45, 46, 49, 56), and one used both SBTs and stepwise reductions in ventilator support (57).

The guideline panel identified a priori five outcomes as “critical” and one outcome as “important” for guiding the formulation of treatment recommendations. The critical outcomes included overall mortality, hospital mortality, duration of mechanical ventilation, reintubation, and ICU length of stay. The important outcome was ICU mortality.

We used the estimated treatment effects derived from the Cochrane review to inform our recommendation (Table 4). On average, patients managed with a ventilator liberation protocol spent 25 fewer hours on mechanical ventilation (95% CI, 12.5–35.5 fewer hours) than did patients managed without a protocol. In addition, management with a ventilator liberation protocol led to being discharged from the ICU 0.96 days earlier (95% CI, 0.24–1.7 d) than management without a protocol. Ventilator liberation protocols, however, had no significant effect on overall mortality (22.3 vs. 22.2%; odds ratio [OR], 1.02; 95% CI, 0.82–1.26) or reintubation rates (10.6 vs. 11.9%; OR, 0.74; 95% CI, 0.44–1.23). Apart from reintubation, which was reported in 11 of 17 trials, adverse events were rarely reported. Three trials reported accidental self-extubation rates (44, 47, 55), which were not significantly affected by ventilator liberation protocols (OR, 0.43; 95% CI, 0.14–1.34). In subgroup analyses, personnel-driven and computer-driven protocols had similar effects compared with management without a ventilator liberation protocol.

Overall, the panel’s confidence in the estimated treatment effects was low, primarily due to risk of bias and inconsistency in results. The most important limitation that may have biased results was the unblinded nature of the trials, which was uniform across trials, because the nature of the intervention and control strategies makes blinding impossible. The number of patients and events was small in most studies, leading to imprecise estimates of treatment effects on most outcomes. Finally, the estimated effect on ICU length of stay was inconsistent across studies.

Panel judgements. Despite the limitations of the evidence, the guideline panel considered the desirable effects of ventilator liberation protocols to outweigh the undesirable effects. Specifically, the panel considered desirable effects—which included a 25-hour reduction in duration of mechanical ventilation and a 1-day reduction in ICU length of stay—to be large relative to the median duration of mechanical ventilation in most ICUs (5 d) (60). Although trials reported few, if any, undesirable effects of ventilator liberation protocols, the guideline panel noted that the trials did not assess some potentially important undesirable effects, such as diminished weaning expertise among ICU practitioners (e.g., physicians, nurses, and respiratory therapists), especially trainees. When discussing this limitation of the evidence, however, the panel noted that one recent observational study examined the relationship between training with ventilator protocols and subsequent knowledge about ventilator management and found no evidence of diminished knowledge among critical care physicians who trained in a high-intensity ventilator protocol environment (61).

The panel’s votes are summarized in Table E1 and judgments are summarized in Table E3.

ATS/CHEST recommendation. We suggest managing acutely hospitalized adults who have been mechanically ventilated for more than 24 hours with a ventilator liberation protocol (conditional recommendation, low certainty in the evidence).

Remarks. The ventilator liberation protocol may be either personnel driven or computer driven. There is insufficient evidence to recommend any ventilator liberation protocol over another.

Values and preferences. This recommendation places a high value on reducing the duration of mechanical ventilation and ICU length of stay and a lower value on resource use.
Table 4. Evidence Profile for the Comparison of Ventilator Liberation Protocols versus No Ventilator Liberation Protocols

<table>
<thead>
<tr>
<th>Quality Assessment</th>
<th>No. of Patients</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Studies</td>
<td>Study Design</td>
</tr>
<tr>
<td>Mortality</td>
<td>15</td>
<td>Randomized</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Randomized</td>
</tr>
<tr>
<td>ICU mortality (assessed with death during ICU stay)</td>
<td>7</td>
<td>Randomized</td>
</tr>
<tr>
<td>ICU length of stay, d</td>
<td>8</td>
<td>Randomized</td>
</tr>
</tbody>
</table>

*Definition of abbreviations: CI = confidence interval; MD = mean difference; OR = odds ratio.

Data from References 43–59.

†We did not downgrade for inconsistency; $I^2 = 18$%.

‡We downgraded by one level for imprecision; the CI included significant benefit and harm (0.82–1.26).

§We did not downgrade for risk of bias; although two trials (47, 58) were at high risk of bias due to improper randomization and lack of allocation concealment, we believe that most of the information is derived from low risk of bias trials.

¶No statistical heterogeneity, $I^2 = 0$%.

∥We downgraded by one level due to imprecision; the CI include both significant benefit and significant harm (0.82–1.32).

¶¶We downgraded by one level for risk of bias; Three studies (48, 50, 59) had unclear or inappropriate randomization and allocation concealment.

¶¶¶Although $I^2 = 40$, we did not downgrade for inconsistency.

††We downgraded by two levels for imprecision; the CIs are very wide (0.58–1.48), and the number of events is small (94 events).

‡‡We downgraded by one level for risk of bias; the original data distribution is skewed, the data were transformed to log scales, and geometric mean was used.

†††We downgraded by one level due to heterogeneity; $I^2 = 67$%.

‡‡‡In addition to examining effect on duration of mechanical ventilation among all 14 trials that reported the outcome, we also examined this outcome among 12 studies in which the intervention was led by a professional (e.g., a respiratory therapist or physician) by excluding 2 studies in which the intervention was computerized.

††††Although $I^2 = 48$, we did not downgrade for inconsistency.

‡‡‡‡Although none of the trials were blinded, we did not downgrade for risk of bias because we believe that the effect of lack of blinding on reintubation is minimal.

‡‡‡‡‡We downgraded by one level for inconsistency. The χ^2 test $P=0.06$, and the $I^2=46$%; the heterogeneity was not explained by subgroup analysis.

‡‡‡‡‡‡We downgraded by one level for imprecision; the CI included significant benefit and harm (0.44–1.23).

††††††We downgraded for imprecision; the upper limit of the CI crossed the minimally important difference threshold.
Question 3a: Should a Cuff Leak Test Be Performed before Extubation of Mechanically Ventilated Adults?

Question 3b: Should Systemic Steroids Be Administered to Adults Who Fail a Cuff Leak Test before Extubation?

Background. Endotracheal intubation can lead to laryngeal edema, which is more common among patients who are intubated more than 36 hours (62) and has been associated with an incidence of postextubation stridor of 6 to 37% (63). Patients with postextubation stridor are likely at increased risk of reintubation, although the published frequency of this outcome has varied from zero to 80%. Reintubation itself is associated with increased morbidity and mortality (63–68). Thus, identifying laryngeal edema before extubation might be useful, as extubation could be delayed and systemic steroids administered to minimize postextubation risks. A delay in extubation, however, leads to ongoing risk of complications associated with mechanical ventilation, such as barotrauma and ventilator-associated pneumonia. Direct visualization of the vocal cords is difficult with an endotracheal tube in position; thus, the cuff leak test is frequently used as a surrogate indicator of laryngeal edema.

Summary of evidence. We identified 14 relevant observational studies (62, 69–81): 11 studies measured the reintubation rate among patients who had undergone a cuff leak test and 13 measured the postextubation stridor rate among patients who had undergone a cuff leak test. We also identified three randomized trials that compared the effects of systemic steroids to placebo among patients who failed a cuff leak test. We also identified three randomized trials that compared the effects of systemic steroids to placebo among patients who failed a cuff leak test. These studies varied in their definition of a failed cuff leak test (i.e., an absent or insufficient cuff leak); four studies used a bedside assessment, five studies used the percent of tidal volume not exhaled (range, 10–24%), and eight studies used lost tidal volume on exhalation (range, 88–283 ml).

The guideline panel identified a priori three outcomes as “critical” to guide the formulation of treatment recommendations; rates of reintubation, postextubation stridor, and delayed extubation. We did not pool the observational data for analysis, because two metaanalyses were recently published that included 12 of the 14 studies that we identified (63, 85). One metaanalysis reported that a failed cuff leak test was an insensitive but specific predictor of upper airway obstruction (i.e., postextubation stridor or laryngeal edema visualized by laryngoscopy), with a pooled sensitivity and specificity of 0.56 (95% CI, 0.48–0.63) and 0.92 (95% CI, 0.90–0.93), respectively (85). The pooled likelihood ratio for upper airway obstruction after failing a cuff leak test was 5.90 (95% CI, 4.01–8.69) and after passing a cuff leak test was 0.48 (95% CI, 0.33–0.72). The area under the curve for the receiver operating characteristic for upper airway obstruction was 0.92 (95% CI, 0.89–0.94). Three of the studies permitted analysis for reintubation; failing a cuff leak test predicted reintubation with a pooled sensitivity and specificity of 0.63 (95% CI, 0.38–0.84) and 0.86 (95% CI, 0.81–0.90), respectively. The pooled likelihood ratio for reintubation after failing a cuff leak test was 4.04 (95% CI, 2.21–7.40) and after passing a cuff leak test was 0.46 (95% CI, 0.26–0.82). The other metaanalysis included 16 studies and demonstrated that the area under the curve for the receiver operating characteristic for laryngeal edema and reintubation were 0.89 and 0.82, respectively (63).

Most of the studies in these two metaanalyses were observational, which may have resulted in biased estimates and did not directly answer the question of interest. We therefore used the data from these observational studies to simulate a trial comparing cuff leak test–guided management with management without a cuff leak test; this required assumptions that all patients in the intervention group who failed a cuff leak test had extubation delayed by 1 day, and all patients in the control group and those passing a cuff leak test in the intervention group were extubated without delay. The results of this simulation showed that cuff leak test–guided management decreased both the reintubation rate (2.4 vs. 4.2%; RR, 0.58; 95% CI, 0.40–0.83) and postextubation stridor rate (4.0 vs. 6.7%; RR, 0.60; 95% CI, 0.47–0.77) but also resulted in more unnecessarily delayed extubations (9.2% absolute increase) (Table 5). The estimated number of additional days of mechanical ventilation were similar among patients receiving care informed by a cuff leak test and those not receiving a cuff leak test (491 d per 1,000 patients vs. 504 d per 1,000 patients, respectively) when we assumed that reintubation resulted in an additional 12 days of mechanical ventilation. Although this assumption is evidence based (64, 67), we recognize that reintubation due to postextubation stridor may result in fewer than 12 additional days of mechanical ventilation. Therefore, we performed a sensitivity analysis to assess when cuff leak test guidance would be advantageous. If reintubation results in 11 or fewer additional days of mechanical ventilation, guidance by the cuff leak test is unlikely to be of benefit and may be harmful. Although the added days per patient are small, the added patient–ICU days for 1,000 patients managed with the cuff leak test is not small, and this could impact ICU bed availability. The panel had very low certainty in the estimates because the analysis was based on simulated data from observational studies, and most of the primary studies had serious risk of bias.

We estimated the effect of systemic steroid therapy in patients who failed a cuff leak test by pooling the estimates from three randomized trials (81–83) (Table 6). Systemic steroid therapy reduced both the reintubation rate (5.8 vs. 17.0%; RR, 0.32; 95% CI, 0.14–0.76) and postextubation stridor rate (10.8 vs. 31.9%; RR, 0.35; 95% CI, 0.20–0.63). The panel had moderate certainty in these estimates because they were derived from randomized trials, but the confidence intervals were wide and the number of patients was small.

In summary, the evidence suggests that patients who have an absent cuff leak have an increased incidence of both postextubation stridor and unsuccessful extubation. Use of a cuff leak test to guide management has the following effects: decreases the reintubation rate and postextubation stridor rate, delays extubation, and has no effect on the duration of mechanical ventilation. The administration of systemic steroids to patients who fail a cuff leak test reduces both the reintubation rate and postextubation stridor rates. Patients passing a cuff leak test have a low risk of reintubation and postextubation stridor, although the risks are also low among patients extubated without having a cuff leak test. These findings informed the guideline panel’s recommendations.

Panel judgments. The panel debated the advantages of cuff leak test–guided management (small absolute decreases in both the reintubation rate [1.8%] and
Table 5. Evidence Profile for a Simulated Randomized Trial Comparing Management Based on a Cuff Leak Test versus Management without a Cuff Leak Test

<table>
<thead>
<tr>
<th>Quality Assessment</th>
<th>No. of Patients</th>
<th>Effect</th>
<th>Other Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLT</td>
<td>No CLT</td>
<td>Relative</td>
</tr>
<tr>
<td>Failed extubation</td>
<td></td>
<td></td>
<td>[RR (95% CI)]</td>
</tr>
<tr>
<td>11</td>
<td>44/1,807 (2.4%)</td>
<td>76/1,807 (4.2%)</td>
<td>0.58 (0.40 to 0.83)</td>
</tr>
<tr>
<td>Postextubation stridor</td>
<td>95/2,347 (4.0%)</td>
<td>158/2,347 (6.7%)</td>
<td>0.60 (0.47 to 0.77)</td>
</tr>
<tr>
<td>Delayed extubation</td>
<td>217/2,347 (9.2%)</td>
<td>0/2,347 (0.0%)</td>
<td>Not estimable</td>
</tr>
</tbody>
</table>

Definition of abbreviations: CI = confidence interval; CLT = cuff leak test; RR = relative risk.

Data from References 62, 69–81.

The data for this outcome are derived from 11 cohort studies that examined the accuracy of cuff leak test in predicting failed extubation. We used the pooled observational data to simulate a randomized trial comparing doing CLT versus not. We assumed that all patients in the control arm were extubated and that all patients with no leak detected in the intervention arm were not extubated.

†We downgraded for risk of bias by one level; most studies were at high risk of bias.

‡We assessed inconsistency for the pooled result from observational studies. There was no inconsistency in the results; therefore, we did not downgrade for the simulated results.

§We downgraded for indirectness by one level. The design of the study is simulated based on the results of observational studies.

‖We downgraded by one level for imprecision; the number of events was small.

Table 6. Evidence Profile for the Comparison of Systemic Steroid Therapy versus Placebo in Patients Who Failed a Cuff Leak Test

<table>
<thead>
<tr>
<th>Quality Assessment</th>
<th>No. of Patients</th>
<th>Effect</th>
<th>Other Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steroids</td>
<td>Placebo</td>
<td>Relative</td>
</tr>
<tr>
<td>Postextubation stridor</td>
<td>13/120 (10.8%)</td>
<td>30/94 (31.9%)</td>
<td>0.35 (0.20 to 0.63)</td>
</tr>
<tr>
<td>Reintubation</td>
<td>7/120 (5.8%)</td>
<td>16/94 (17.0%)</td>
<td>0.32 (0.14 to 0.76)</td>
</tr>
</tbody>
</table>

Definition of abbreviations: CI = confidence interval; RR = relative risk.

Data from references 82–84.

*We downgraded by one level for imprecision because the CI is wide (0.2–0.63) and the number of events is small (43 events).

†We could not reliably assess for publication bias due to small number of studies.

‡We downgraded by one level for imprecision; the CI is wide (0.14–0.76) and the number of events is small (23 events).
postextubation stridor rate (2.7%) versus the downsides of cuff leak test–guided management (a large absolute increase in the delayed extubation rate [9.2%]). The panel was particularly concerned about the large proportion of patients whose extubation will be unnecessarily delayed by cuff leak test–based management due to a false-positive test result (i.e., the absence of a cuff leak when there is no laryngeal edema), even though the additional days of mechanical ventilation were similar among those receiving care informed by a cuff leak test and those not receiving a cuff leak test. We assumed a 1-day delay in extubation after a failed cuff leak test, but two trials of administering systemic steroids found that extubation was delayed by only 4 to 12 hours (82, 83). The panel also considered that delays in extubation may extend beyond 1 day for some patients. The panel’s heightened concern was driven by recognition that most patients whose management is not guided by a cuff leak test are successfully extubated. The panel also considered that the cuff leak test is easy to perform, inexpensive, and safe (as long as effective oral care is performed before the test) and improves clinician comfort with the extubation decision when a patient passes a cuff leak test.

The panel discussed the possibility that the cuff leak test could be reserved for patients at high risk for postextubation stridor, such as patients who experienced a traumatic intubation, were intubated more than 6 days, have a large endotracheal tube, are female, or were reintubated after an unplanned extubation (62, 76, 86). Similar to previous recommendations on the use of the cuff leak test and steroids to prevent postextubation stridor and reintubation (87), the panel concluded that the cuff leak test should be reserved for high-risk patients (i.e., best practice is to assess each patient individually for risk factors for failed extubation).

With respect to systemic steroid therapy after a failed cuff leak test, the balance of the benefits (decreased reintubation and postextubation stridor rates) versus the downsides (adverse effects) of systemic steroid therapy was much clearer, because the frequency and severity of adverse effects are relatively small given the short duration of systemic steroid administration. In addition to our analysis above, systemic steroid use was further supported by a randomized, double-blind trial of methylprednisolone (four 20-mg doses administered over 12 h) versus placebo before extubation in all patients (a cuff leak test was not performed), which found that steroids reduced postextubation stridor, reintubations, and reintubations due to postextubation stridor (88).

The panel’s votes are summarized in Table E1 and judgments are summarized in Table E4.

ATS/CHEST recommendations.

- We suggest performing a cuff leak test in mechanically ventilated adults who meet extubation criteria and are deemed high risk for postextubation stridor (conditional recommendation, very low certainty in the evidence).
- For adults who have failed a cuff leak test but are otherwise ready for extubation, we suggest administering systemic steroids at least 4 hours before extubation, (conditional recommendation, moderate certainty in the evidence).

Remarks. Risk factors for postextubation stridor include traumatic intubation, intubation more than 6 days, large endotracheal tube, female sex, and reintubation after unplanned extubation. A repeat cuff leak test is not required after the administration of systemic steroids.

Values and preferences. These recommendations place a high value on avoiding reintubation, postextubation stridor, and delayed extubation, and a lower value on the burdens related to implementing the cuff leak test and the side effects of steroid use.

Summary

The recommendations in these guidelines are the result of our panel’s systematic review of the existing evidence and our interpretation of how the evidence should be applied in clinical practice. They include conditional recommendations for protocolized rehabilitation directed toward early mobilization, for a ventilator liberation protocol, for performing a cuff leak test in mechanically ventilated patients who meet extubation criteria and are deemed high risk for postextubation stridor, and for administering systemic steroids for less than 24 hours before extubation in patients who failed a cuff leak test. A conditional recommendation indicates that the desirable consequences probably outweigh the undesirable consequences of the intervention, and well-informed patients or substitute decision makers may make different choices regarding whether or not they are managed with the intervention. As new studies are conducted and evidence accumulates, these recommendations should be reassessed and modified as needed.

This official practice guideline was prepared by an ATS/CHEST ad hoc committee on liberation from mechanical ventilation in adults.

Members of the committee are as follows:

- **Scott K. Epstein, M.D.**
- **Andres Estebaran, M.D., Ph.D.**
- **Eddy Fan, M.D., Ph.D.**
- **Guillem Ferrer, M.D., Ph.D.**
- **Gilles L. Fraser, Pharm.D.**
- **Michelle Ng Gong, M.D.**
- **Catherine L. Hough, M.D., M.Sc.**
- **Sangeeta Mehta, M.D.**
- **Rahul Nanchal, M.D.**
- **Sheena Patel, M.P.H.**

Author Disclosures: T.D.G. received honoraria from Hospira Inc. and served on a data and safety monitoring board for ALung Technologies Inc. J.P.K. was a speaker for Hospira Inc. D.R.O. receives research support.
supports from Cardeas Pharmaceutical and has provided expert testimony on the subject of venous thromboembolic disease. G.A.S. received research support from Spectral Diagnostics, has stock or stock options with Johnson & Johnson, and received royalties from UpToDate. J.D.T. received research support from AstraZeneca and served on a data and safety monitoring board for Spirak. S.K.E. receives royalties from UpToDate and Wolters Kluwer. E.F. received research support from Nihon Kohden and was a speaker for ALung Technologies Inc. W.D.S. received research support from Hill-Rom. C.N.S. has noncommercialized intellectual property: patent “Prevention of Ventilator Associated Pneumonia” and patent pending for “Automated Detection of Incomplete Exhalation for Adults on Invasive Mechanical Ventilations”; copyright held by Virginia Commonwealth University for “Richmond Agitation-Sedation Scale”; and has stocks or stock options in Baxter, Johnson & Johnson, Merck, and Pfizer (family member, independently managed). P.E.M., W.A., S.M.B., A.E., M.F., G.L.F., M.N.G., C.L.H., S.M., R.N., S.P., A.J.P., T.S., and K.C.W. reported no relationships with relevant commercial interests.

References

