Title: Effects of Childhood Asthma on the Development of Obesity among Schoolaged Children

Zhanghua Chen, Ph.D.,¹ Muhammad T. Salam, M.D. Ph.D.,^{1,3} Tanya L. Alderete, Ph.D.,¹

Rima Habre, Sc.D.,¹ Theresa M. Bastain, Ph.D.,¹ Kiros Berhane, Ph.D.,² Frank D.

Gilliland, M.D., Ph.D.¹

1= Department of Preventive Medicine, Division of Environmental Health, Keck School

of Medicine of USC, Los Angeles, California

2= Department of Preventive Medicine, Division of Biostatistics, Keck School of

Medicine of USC, Los Angeles, California

3= Department of Psychiatry, Kern Medical Center, Bakersfield, California

Corresponding Author:

Frank D. Gilliland

American Journal of Pespiratory and Critical Care Medicine

Southern California Environmental Health Sciences Center Department of Preventive Medicine University of Southern California Keck School of Medicine of USC 2001 N. Soto Street Los Angeles, CA 90032 Phone: (323) 442-1309 Email: gillilan@usc.edu

Word Counts: (Text: 3498, limit 3500/Abstract: 246, limit 250) Tables: 3 Figure: 1 Supplementary Tables: 10

Short Running Title: Asthma Increases the Development of Obesity Contributions of All Authors:

Z.C. and F.D.G. conducted the analyses and wrote the article. F.D.G. and K.B.

contributed to study design and data collection. M.T.S., T.L.A., K.B., R.K., and T.M.B.

edited the article and contributed to discussion. All authors reviewed the article. Z.C.

and F.D.G. are the guarantors of this work, and as such, had full access to all the data in

the study and take responsibility for the integrity of the data and the accuracy of the data analysis. All authors declare that they have no conflict of interest.

Key words: Asthma, Wheeze, Obesity, Overweight, Children, Longitudinal

American Journal of Respiratory and Critical Care Medicine

Copyright 2017 American Thoracic Society

ABSTRACT

Rationale: Asthma and obesity often occur together in children. It is unknown whether asthma contributes to the childhood obesity epidemic.

Objectives: We aimed to investigate the effects of asthma and asthma medication use on the development of childhood obesity.

Methods: The primary analysis was conducted among 2,171 non-obese children who were 5-8 years of age at study enrollment in the Southern California Children's Health Study (CHS) and were followed for up to 10 years. A replication analysis was performed in an independent sample of 2,684 CHS children followed from mean age of 9.7 to 17.8 years.

Measurements and Main Results: Height and weight were measured annually to American Journal of Respiratory and Critical Care Medicine classify children into normal, overweight and obese categories. Asthma status was

ascertained by parent- or self-reported physician-diagnosed asthma. Cox proportional Copyright 2017 American Thoracic Society hazards models were fitted to assess associations of asthma history with obesity incidence during follow-up.

Results: We found that children with a diagnosis of asthma at cohort entry were at 51% increased risk of developing obesity during childhood and adolescence compared to children without asthma at baseline [HR (95% CI)=1.51 (1.08, 2.10)] after adjusting for confounders. Use of asthma rescue medications at cohort entry reduced the risk of developing obesity [HR (95% CI)=0.57 (0.33, 0.96)]. Additionally, the significant association between asthma history and increased risk of developing obesity was replicated in an independent CHS sample.

Conclusions: Children with asthma may be at higher risk of obesity. Asthma rescue medication use appeared to reduce obesity risk independent of physical activity.

American Journal of Respiratory and Critical Care Medicine

Copyright 2017 American Thoracic Society

INTRODUCTION

The prevalence of obesity and asthma among both children and adults have increased dramatically over the past several decades (1). A large body of evidence has documented the co-occurrence of asthma and obesity suggesting that the pathobiology of these common conditions may be related (2). Several mechanisms have been proposed that link obesity and asthma, including obesity-influenced lung physiology such as reductions in pulmonary compliance and limitations in airflow, systemic inflammation, dysfunctions of the sympathetic nervous system and common genetic factors (3).

Numerous studies have shown increased risk of asthma and more severe respiratory symptoms among overweight or obese children (4, 5) and adults (6, 7). American Journal of Respiratory and Critical Care Medicine incidence (8-11), it is unclear whether children with asthma are at higher risk for the Copyright 2017 American Thoracic Society development of obesity. Several risk factors for obesity are more prevalent among children with asthma including reduced physical activity (12) and potential adverse effects from corticosteroid medications (13). If asthma increases the risk for developing obesity, then a portion of the obesity epidemic in children may be related to the increased occurrence of asthma or the effects of a common etiologic factor. It follows that early interventions for children with asthma could play a role in preventing obesity and related metabolic diseases since obese children are at higher risk for adult obesity and other metabolic diseases (14-16).

In this study, we investigated the effects of asthma and related phenotypes on the development of obesity in a cohort of non-obese kindergarten and 1st grade children

5

(ages 5.2-7.9 years) participating in the southern California Children's Health Study (CHS). We selected children who were not obese at cohort entry and examined obesity incidence over a 10-year follow-up to assess the hypothesis that children presenting with asthma in early life are at increased risk of developing obesity during childhood and adolescence. In order to confirm the robustness of our findings, we performed a replication analysis in an independent cohort of CHS children who were non-obese at cohort entry and were followed from mean age of 9.7 to 17.8 years. Additionally, we assessed whether asthma medication use influenced the risk of developing obesity in primary study cohort.

METHODS American Journal of Respiratory and Critical Care Medicine

The CHS study design has been described in detail previously (17-19). Briefly, Copyright 2017 American Thoracic Society children from eight Southern California communities were followed from kindergarten or 1st grade to high school graduations with an original enrollment of 3,474 subjects in Cohort E. In the primary analysis, we included 2,706 who were non-obese at study entry. We then excluded 348 subjects with only one assessment (no follow-up data), 19 subjects with baseline age greater than 8 years old, and 168 subjects who did not have complete asthma history information at study entry. The current analysis focused on 2,171 children who were recruited from schools in eight communities starting in year 2002 and 2003, and were followed up till 10 years after up to year 2012. Additionally, a replication study was performed in an independent CHS study sample (Cohorts C and D combined), in which children were recruited from 4th grade in year 1992 and 1994, and

followed untill high school graduation. From the original 3,887 children, we excluded children who were obese (n=448), missing BMI data (n=186) at cohort entry, had only one visit with BMI data (n=471), or were missing asthma history data (n=98) at the cohort entry. As such, 2,684 children contributed to the replication sample. The University of Southern California Institutional Review Board approved the study protocol.

Exposure and Outcomes Assessment

At study entry, written parental informed consent and student assent were obtained for all CHS participants. Children were examined annually or bi-annually during the follow-up period. Parents completed a self-administered questionnaire on sociodemographic factors, history of respiratory illness, physical activity patterns, smoking American Journal of Respiratory and Critical Care Medicine

completed by parents from baseline to year 5, and by children from follow-up year 6 Copyright 2017 American Thoracic Society (ages 10-13 years) onwards. At each study visit, asthma history was classified based on a yes/no response to the question "Has a doctor ever diagnosed this child as having asthma?" Agreement of parental report of asthma has been previously assessed by reviewing a sample of medical records and 96% agreement was observed (20). Active asthma was defined as children with lifetime asthma and wheeze during the previous year of the study visit. History of asthma medication use was assessed based on questions about any rescue, controller and other medication use for asthma or wheezing in the last 12 months. Photographic charts of medications and inhalers were used to collect information on use of specific medications. The age of asthma onset was classified into "early" (up to and including four years of age) and "late" (after four years of age). Physical activity status was collected based on responses to questions about the number of exercise classes attended and weekly days of outdoor sports in the last 12 months. Smoking exposures at home were defined based on yes/no responses to questions "Does anyone living in this child's home currently smoke cigarettes, cigars or pipes on a daily basis?" and "Did this child's biologic mother smoke while she was pregnant with this child?". Similar parents- or self-reported questionnaires were also collected annually in the replication study sample, except the category of asthma medication use was not collected, and the physical activity status was collected based on responses to the question about the number of sports teams participated in the last 12 months.

Children enrolled in the CHS had height and weight measured by a trained American Journal of Respiratory and Critical Care Medicine measures of height and weight were used to calculate body mass index (BMI: kg of Copyright 2017 American Thoracic Society weight/height in m²). BMI-defined overweight and obese categories were determined using the 85th and 95th BMI percentile thresholds based on the age and sex-specific Center for Disease Control (CDC) 2000 BMI growth curves (21). An incidence case of obesity was defined as the first occurrence of obesity in a child who was not obese at the cohort entry.

Statistical Analysis

Socio-demographic, physical activity and smoking exposures were classified into categories for descriptive analyses. Baseline history of asthma medication use was classified into no medication use, using rescue medications, using non-steroid controller medications, and using steroid asthma medications. Participants who developed obesity

during the study follow-up were censored at the midpoint of the follow-up period between the prior visit when they were not obese and the next visit when they were first determined to be obese. Participants who were not obese during the entire study followup were either censored at the end of study follow-up or when they were lost to followup. Cox proportional hazards models were fitted to explore univariate associations between baseline characteristics and obesity incidence during follow-up from the baseline visit to the time when participants were censored. Cox proportional hazards models with sex-specific baseline hazards were used to analyze the association of asthma and other asthma-related respiratory health at cohort entry (wheezing and asthma medication usage) with obesity incidence during follow-up. Baseline child and home characteristics such as age, sex, race/ethnicity, overweight status, parent's American, Journal of Respiratory and Critical Care Medicine activity status, and second-hand and in utero smoking exposure, and a fixed effect of Copyright 2017 American Thoracic Society the community of residence were included as confounders. Follow-up physical activity status and asthma medication use during follow-up were additionally considered in the analysis using time-dependent variables. Missing data was not imputed in the analysis. Participants with missing covariate information were included in the analysis using the missing indicator method. Interactions between baseline asthma status and baseline characteristics were tested for by including a multiplicative interaction term in the model. Stratified analysis was conducted to explore heterogeneity in effects by sex, Hispanic ethnicity, and baseline overweight status.

For sensitivity analysis, we first investigated whether asthma and asthma-related respiratory phenotypes were associated with the risk of becoming either overweight or

9

Page 10 of 37

obese using Cox proportional hazards models, adjusted for the aforementioned confounders. In this analysis, we studied a subsample of children who had normal BMI at baseline and used the outcome as occurrence of being overweight or obese during the follow-up. Second, we investigated whether our results were significantly influenced by children who had no asthma history at baseline but developed asthma during the follow-up period. Third, we restricted obesity incidence as children who developed obesity and were obese at two or more study visits during the entire follow-up. This analysis was conducted to determine if our results were influenced by the recurrence of obesity. Lastly, we assessed potential biases from loss to follow-up by excluding subjects who did not complete the entire 10-year study follow-up. In addition, a replication analysis was performed in the CHS replication sample for associations American Journal of Respiratory and Critical Care Medicine risk of developing obesity during follow-up using similar cox proportional hazards model Copyright 2017 American Thoracic Society adjusting for potential confounders including the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage, number of teams sports attended in the previous year, overweight status, past and current second-hand smoke, and follow-up number of teams sports attended as a timedependent variable with a sex-specific baseline hazard. All statistical tests were twosided at a 0.05 significance level. SAS version 9.3 (SAS Institute Inc., Cary, NC) was used for data analysis.

RESULTS

Participant characteristics at study entry are presented in Tables 1 and 2. At entry, the mean age was 6.6±0.6 years, 1,084 (49.9%) were girls, 398 (18.3%) children were overweight, and 292 (13.5%) children had diagnosed asthma. The median length of follow-up was 6.9 (inter-quartile range: 2.3 - 8.6) years with 4.3 follow-up visits on average. During the follow-up, 342 (15.8%) children developed obesity.

Table 1 presents univariate associations of child and family characteristics at study entry with obesity incidence during the follow-up period. Baseline overweight status was the strongest predictor of the follow-up obesity incidence rate [HR=12.2, 95% confidence interval (CI) = (9.8, 15.3)]. Additionally males, Hispanic White children, and children from families with lower annual income and education levels were at higher **Amatical Control of Respiratory and Critical Care Medicine** classes in the previous year had almost 60% lower risk of developing obesity than **Copyright 2017 American Thoracic Society** children taking no exercise classes [HR=0.41, 95% CI = (0.21, 0.79)]. However, this association was attenuated and not statistically significant after adjusting for sex, ethnicity, family income and education levels [HR=0.69, 95% CI = (0.34, 1.38)]. Univariate analysis also showed a borderline significant association between baseline asthma history and the increased risk of developing obesity [HR=1.30, 95% CI = (0.98, 1.72)]. No significant association was found between exposures *in utero to* maternal smoking or to secondhand tobacco smoke and the risk for obesity (all p>0.41).

After adjusting for potential confounders, we found that early childhood asthma contributed to the development of obesity during later childhood and adolescence (Table 2). For example, the predicted annual obesity incidence rate at age 14 was 4.2 *versus*

2.7 per 100 person-years among girls and 6.6 versus 4.3 per 100 person-years among boys when comparing non-obese children who had asthma history at the study entry with children who had no asthma history (Figure 1). The association result from the entire cohort suggests that non-obese children with asthma at baseline were 51% more likely to develop obesity [HR=1.51, 95% CI = (1.08, 2.09)] during follow-up compared to children without asthma at baseline, after adjusting for the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage (yes/no), number of exercise classes attended in the previous year, weekly days of outdoor sports, overweight status (yes/no), exposures to second-hand smoke and maternal smoking exposure in utero, and follow-up time-dependent variables including number of exercise classes attended, weekly days of outdoor sports, and any asthma American Journal of Respiratory and Critical Care Medicine medication use with a sex-specific baseline hazard. Children with history of wheeze before study entry were also at 42% higher risk of developing obesity [HR=1.42, 95% CI Copyright 2017 American Thoracic Society = (1.08, 1.85) during follow-up compared to children who never experienced wheeze after adjusting for confounders. Age of asthma onset did not substantially affect the associated obesity risk [HR (95% CI) for early onset asthma =1.46 (0.95, 2.23), and for late onset asthma = 1.39 (0.62, 3.08)]. Among children who had no asthma history at baseline, no significant association was found between new-onset asthma during followup and the incidence of obesity after adjusting for confounders [HR=0.90, 95% CI = (0.52, 1.55)].

The associations of asthma phenotypes and obesity were replicated in an independent replication cohort of 2,684 children who were followed from mean age of 9.7 to 17.8 years (baseline characteristics are shown in Table E8). Baseline asthma

history was significantly associated with higher obesity risk after adjusting for potential confounders [HR=1.56, 95% CI = (1.11, 2.19), Table E9].

Conditional on baseline asthma history status, children who used asthma rescue medications at study entry had significantly reduced risk of developing obesity during the follow-up after adjusting for other controller and/or steroid asthma medication usage and potential confounders, compared to children who did not use asthma medications [Table 3, HR=0.57, 95% CI=(0.33, 0.96)]. The use of controller and steroid medications were not associated with the risk of developing obesity (all p>0.67). We were unable to replicate these results because the independent replication cohort lacked detailed information on asthma medication use.

We found little evidence to support heterogeneity in the effects of asthma status American Journal of Respiratory and Critical Care Medicine on obesity based on the baseline characteristics described in Table 1 (all interaction

p>0.28, data not shown). Stratified analysis suggests that the association between Copyright 2017 American Thoracic Society
 baseline asthma history and follow-up obesity risk may be stronger among boys (Table E1), Hispanic Whites (Table E2), and baseline overweight children (Table E3) comparing to girls, non-Hispanic Whites, and baseline normal weight children, respectively.

Several sensitivity analyses were conducted after adjusting for potential confounders. First, among 1,773 children who had normal weight at baseline, we investigated whether asthma and asthma-related respiratory health were associated with the risk of becoming overweight or obese (Table E4). Although the associations were not statistically significant, normal weight children with asthma at baseline tended to have higher risk of being overweight or obese during the follow-up [HR=1.22, 95% CI = (0.89, 1.67)]. Second, after excluding children who had new-onset asthma during the

follow-up (n=235) and who did not have follow-up asthma information (n=12), significant associations between asthma history at baseline and the follow-up risk of obesity remained [HR=1.50, 95% CI = (1.07, 2.10), Table E5]. Third, after excluding 120 children who were obese only at one of all follow-up visits, we found consistent association between asthma history at baseline and higher risk of obesity development during the follow-up [HR=1.71, 95% CI = (1.13, 2.57), Table E6]. Lastly, there were 845 subjects who were lost to follow-up. The analysis excluding these subjects showed that the positive association between baseline asthma history and obesity risk remained significant [HR=1.43, 95% CI = (1.05, 1.96), Table E7].

DISCUSSION

American Journal of Respiratory and Critical Care Medicine wears and observed that children with an early-life history of asthma or wheeze by study Copyright 2017 American Thoracic Society entry were at higher risk of developing obesity. The longitudinal finding of the association between early-life asthma history and increased risk of developing obesity during the follow-up is novel, although the association effect size of asthma on the risk of obesity is smaller than some other well-known obesity risk factors such as baseline overweight status, low parental education levels and Hispanic ethnicity. Children who used rescue asthma medications at study entry had a reduced risk of developing obesity. This association was independent of physical activity and other asthma medications use. Results from the independent replication cohort further supported our hypothesis that early-life asthma history was associated with higher risk of childhood obesity among children who were followed from mean age of 9.7 to 17.8 years. These findings were not explained by difference in age, sex, ethnicity, social-economic status, smoking exposures, physical activity, and overweight status at baseline.

Although most previous studies documented that obesity precedes and predicts the development of asthma (4, 8, 22), no unanimity exists. A recent prospective study following subjects from age 20 to 40 showed that active asthma was associated with later weight gain and later obesity among women, whereas weight gain and obesity were not associated with later asthma (12). However, no association was found among men. Because children with asthma tended to be more physically inactive (23) and many asthma medications have side effects of weight gain (24), it is plausible that children with asthma are at a higher risk of developing obesity. However, there is a lack of epidemiological studies that investigate this hypothesis, especially in pediatric American Journal of Respiratory and Critical Care Medicine with early-life asthma and wheeze are at increased risk of developing obesity during Copyright 2017 American Thoracic Society later childhood. This association was independent of physical activity, although we have limited information about daily physical activity. Interestingly, our results also suggested that using asthma rescue medication in early childhood may have the potential to prevent development of obesity in the later life. Thus, early diagnosis and treatment of asthma may avoid the vicious cycle of asthma increasing the development of obesity with obesity subsequently causing increased asthma symptoms and morbidity leading to further weight gain. Since asthma treatments are largely efficacious, they may have the potential to help prevent obesity through early diagnosis and treatment of childhood asthma.

The biological mechanisms underlying the increased risk of obesity due to asthma are uncertain. Some studies showed that long-term treatment with glucocorticosteroids in asthmatic children can influence lipid metabolism by increasing the uptake of lipids from digestive system and enhancing lipids storage in tissues, especially in the trunk (25). However, results of the association between asthma medication treatment and increased risk of obesity have not been consistent (26). Interestingly, our results suggested that asthma rescue medication treatment prevented obesity risk. This association was independent of physical acitivity and other asthma medication use. We speculate that the use of β-agonists for asthma symptoms could have direct effects on adipocytes and lipolysis and protect against obesity (27, 28). β2-adrenergic receptors are present in adipose tissue and skeletal muscle, which mediates

Animal studies showed that β 2-adrenergic stimulation increased energy expenditure **Copyright 2017 American Thoracic Society** and enhances lipolysis (30, 31). Contrastly, chronic use of β -blockers to inhibit the β 2adrenergic system was shown to reduce energy expenditure, fat utilization and resulted in weight gain (32). A small trial further supported the beneficial effect of β 2-adrenergic agonists on ameliorating obesity, where the treatment of Formoterol, a new generation of highly β 2-selective agonist was shown to increase energy expenditure and fat oxidation among 12 study participants of around 30 years old (33).

The strengths of this study include long-term, prospective follow-up of a large cohort of children, with exposure and outcome data obtained consistently. The prospective design with non-obese children at baseline allows us to confirm that asthma onset precedes the occurrence of obesity. Additionally, our significant findings from the

primary CHS study cohort was successfully replicated in an independent CHS sample from an earlier time period with a similar longitudinal study design. There are several limitations that need to be considered in interpreting these results. First, information about asthma was self-reported in guestionnaires, so misclassification could exist in our data. However, this misclassification is limited based on our previous review of medical records (20) and likely non-differential in relation to measured height and weight data, leading to bias towards the null. Second, we have limited physical activity information and no dietary information on the children in this analysis. Diet and/or physical activity have the possibility to mediate or bias our observed results between asthma and obesity incidence. Third, we used BMI and CDC BMI growth curve to define overweight and obesity. Future studies using direct measures of body fat mass and distribution are American Journal of Respiratory and Critical Care Medicine excluding_non-obese children with incomplete data or extremely elder at baseline as Copyright 2017 American Thoracic Society described in the study design. However, we compared characteristics among 535 excluded children with our analysis cohort, and found no significant difference between the two samples (Table E10). Additionally, our sensitivity analysis excluding children

who did not complete the study showed that the bias caused by loss to follow-up was limited in our results.

In conclusion, children with asthma were at higher risk of developing obesity in later childhood and adolescence. Rescue medication use may reduce obesity risk independent of asthma diagnosis. In addition to excess caloric intake and lack of physical activity, (34), our findings suggest that childhood asthma also contributes to the development of childhood obesity. Early interventions for children with asthma and/or wheezing may be warranted to prevent a vicious cycle of worsening obesity and asthma that could contribute to the development of other metabolic diseases including prediabetes and type 2 diabetes in later life.

American Journal of Respiratory and Critical Care Medicine

Copyright 2017 American Thoracic Society

Figure Legend

Figure 1. Baseline asthma history was associated with a higher risk of developing obesity during an average of 6.8 follow-up years among A) 1087 Boys and B) 1084 Girls in the Children's Health Study Cohort E (as described in METHODS). The model predicted annual obesity incidence rates and 95% confidence intervals during the entire study follow-up from a mean age of 6.6 to 15.2 years old are presented comparing children with early-life asthma history and children having no asthma history at baseline among boys and girls. Cox proportional hazards model was used to predict annual obesity incidence rates during the study follow-up, adjusting for baseline characteristics including a fixed effect of the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage (yes/no), number of exercise (yes/no), second-hand smoke and maternal smoking exposure *in utero*, and follow-up (opyright 2017 American Thoracic Society) time-dependent variables including number of exercise classes attended, weekly days

of outdoor sports, and any asthma medication use with a sex-specific baseline hazard.

ACKNOWLEDGEMENTS

This work was supported by the Southern California Environmental Health Sciences Center grant (5P30ES007048) funded by the National Institute of Environmental Health Sciences; National Institute of Environmental Health Sciences (5P01ES011627); and the Hastings Foundation.

REFERENCES

- 1. National Center for Health Statistics. Health, United States, 2013: With Special Feature on Prescription Drugs. Hyattsville, Maryland; 2014.
- 2. Delgado J, Barranco P, Quirce S. Obesity and asthma. *Journal of investigational allergology & clinical immunology* 2008; 18: 420-425.
- 3. Brashier B, Salvi S. Obesity and Asthma: Physiological Perspective. *Journal of Allergy* 2013; 2013: 11.
- Gilliland FD, Berhane K, Islam T, McConnell R, Gauderman WJ, Gilliland SS, Avol E, Peters JM. Obesity and the Risk of Newly Diagnosed Asthma in School-age Children. *American Journal of Epidemiology* 2003; 158: 406-415.
- Scholtens S, Wijga AH, Seidell JC, Brunekreef B, de Jongste JC, Gehring U, Postma DS, Kerkhof M, Smit HA. Overweight and changes in weight status during childhood in relation to asthma symptoms at 8 years of age. *The Journal of allergy and clinical immunology* 2009; 123: 1312-1318 e1312.
- 6. Beckett WS, Jacobs DR, Jr., Yu X, Iribarren C, Williams OD. Asthma is associated with weight gain in females but not males, independent of physical activity. *Am J Respir Crit Care Med* 2001; 164: 2045-2050.
- 7. Nystad W, Meyer HE, Nafstad P, Tverdal A, Engeland A. Body mass index in relation to adult asthma among 135,000 Norwegian men and women. *Am J Epidemiol* 2004; 160: 969-976.

Am& Gamargo CAdr., Weiss ST Zhang & Willett WG Speizer FE Prospective study of body thas i Cine index, weight change, and risk of adult-onset asthma in women. Arch Intern Med 1999; 159: 2582-2588.

- 9. Stenius-Aarniala B, Poussa T, Kvarnstrom J, Gronlund EL, Ylikahri M, Mustajoki P. Immediate and long term effects of weight reduction in obese people with asthma: randomised controlled study. *BMJ* 2000; 320: 827-832.
- 10. Ford ES, Mannino DM, Redd SC, Mokdad AH, Mott JA. Body mass index and asthma incidence among USA adults. *The European respiratory journal* 2004; 24: 740-744.
- 11. Spivak H, Hewitt MF, Onn A, Half EE. Weight loss and improvement of obesity-related illness in 500 U.S. patients following laparoscopic adjustable gastric banding procedure. *American journal of surgery* 2005; 189: 27-32.
- Hasler G, Gergen PJ, Ajdacic V, Gamma A, Eich D, Rossler W, Angst J. Asthma and body weight change: a 20-year prospective community study of young adults. *Int J Obes (Lond)* 2006; 30: 1111-1118.
- 13. Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. The relation of childhood BMI to adult adiposity: the Bogalusa Heart Study. *Pediatrics* 2005; 115: 22-27.
- Li C, Ford ES, Zhao G, Mokdad AH. Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among U.S. adolescents: National Health and Nutrition Examination Survey 2005-2006. *Diabetes Care* 2009; 32: 342-347.
- 15. Dietz WH. Health consequences of obesity in youth: childhood predictors of adult disease. *Pediatrics* 1998; 101: 518-525.

- 16. Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. *J Pediatr* 2007; 150: 12-17 e12.
- 17. Chen Z, Salam MT, Eckel SP, Breton CV, Gilliland FD. Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children's Health Study. *Journal of Thoracic Disease* 2015; 7: 46-58.
- Gauderman WJ, Urman R, Avol E, Berhane K, McConnell R, Rappaport E, Chang R, Lurmann F, Gilliland F. Association of Improved Air Quality with Lung Development in Children. New England Journal of Medicine 2015; 372: 905-913.
- 19. Urman R, McConnell R, Islam T, Avol EL, Lurmann FW, Vora H, Linn WS, Rappaport EB, Gilliland FD, Gauderman WJ. Associations of children's lung function with ambient air pollution: joint effects of regional and near-roadway pollutants. *Thorax* 2013.
- 20. Salam MT, Gauderman WJ, McConnell R, Lin P-C, Gilliland FD. Transforming growth factor-1 C-509T polymorphism, oxidant stress, and early-onset childhood asthma. *Am J Respir Crit Care Med* 2007; 176: 1192-1199.
- 21. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL. 2000 CDC Growth Charts for the United States: methods and development. *Vital Health Stat 11* 2002: 1-190.
- 22. Ford ES. The epidemiology of obesity and asthma. *The Journal of allergy and clinical immunology* 2005; 115: 897-909; quiz 910.
- Am2 Williams B, Powell A, Hoskins Coverille & Exploying and explaining low participation in clicine physical activity among children and young people with asthma: a review. BMC family practice 2008; 9: 40.
 - 24. Schwarzer G, Bassler D, Mitra A, Ducharme FM, Forster J. Ketotifen alone or as additional medication for long-term control of asthma and wheeze in children. *The Cochrane database of systematic reviews* 2004: CD001384.
 - 25. Umławska W. Adipose tissue content and distribution in children and adolescents with bronchial asthma. *Respiratory Medicine* 2015; 109: 200-207.
 - 26. Crowley S, Hindmarsh PC, Matthews DR, Brook CG. Growth and the growth hormone axis in prepubertal children with asthma. *J Pediatr* 1995; 126: 297-303.
 - 27. Enoksson S, Talbot M, Rife F, Tamborlane WV, Sherwin RS, Caprio S. Impaired in vivo stimulation of lipolysis in adipose tissue by selective beta2-adrenergic agonist in obese adolescent girls. *Diabetes* 2000; 49: 2149-2153.
 - 28. Macho-Azcarate T, Marti A, Gonzalez A, Martinez JA, Ibanez J. Gln27Glu polymorphism in the beta2 adrenergic receptor gene and lipid metabolism during exercise in obese women. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 2002; 26: 1434-1441.
 - Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB. betaAR signaling required for diet-induced thermogenesis and obesity resistance. *Science* 2002; 297: 843-845.
 - 30. Bjorgell P, Belfrage P. Characteristics of the lipolytic beta-adrenergic receptors in hamster adipocytes. *Biochim Biophys Acta* 1982; 713: 80-85.
 - 31. Mersmann HJ. Acute metabolic effects of adrenergic agents in swine. *The American journal of physiology* 1987; 252: E85-95.

- Lee P, Kengne AP, Greenfield JR, Day RO, Chalmers J, Ho KK. Metabolic sequelae of betablocker therapy: weighing in on the obesity epidemic? *Int J Obes (Lond)* 2011; 35: 1395-1403.
- 33. Lee P, Day RO, Greenfield JR, Ho KK. Formoterol, a highly beta2-selective agonist, increases energy expenditure and fat utilisation in men. *Int J Obes (Lond)* 2013; 37: 593-597.
- 34. Ho M, Garnett SP, Baur LA, Burrows T, Stewart L, Neve M, Collins C. Impact of dietary and exercise interventions on weight change and metabolic outcomes in obese children and adolescents: a systematic review and meta-analysis of randomized trials. *JAMA Pediatr* 2013; 167: 759-768.

American Journal of Respiratory and Critical Care Medicine

Copyright 2017 American Thoracic Society

Table 1. Univariate associations of child and home characteristics with the risk of developing obesity during a mean follow-up of seven years among 2171 children in the Children's Health Study Cohort E^{*} who were not obese at study entry.

Baseline variables	N (%)8	Hazard Ratio	95% CI
Age (Years)			
[5-6)	502 (23.1)	Ref	
[6-7]	1070 (49.3)	1.00	(0.77 - 1.29)
7-8)	599 (27.6) [´]	1.05	(0.77 - 1.44)
Sex			(•••••)
Girls	1084 (49.9)	Ref	
Boys	1087 (50.1)	1.69	(1.36 - 2.10)
Overweight [†]	1007 (00.1)	1.00	(1.00 - 2.10)
No	1773 (81.7)	Ref	
Yes			(0.02 15.06)
	398 (18.3)	12.24	(9.83 - 15.26)
Ethnicity		D (
Non-Hispanic Whites	687 (31.6)	Ref	
Hispanic Whites	1235 (56.9)	1.93	(1.49 - 2.51)
Others	249 (11.5)	1.39	(0.93 - 2.06)
Annual Family income			
Less than \$50,000	868 (40.0)	Ref	
\$50,000 to \$99,999	590 (27.2)	0.71	(0.54 - 0.92)
\$100,000 or more	395 (18.2)	0.47	(0.33 - 0.67)
Parental education			()
Less than 12th grade	390 (18,0)		
Completed grade 12	V 386 (17/8)C	ritica Ca	recolageogicii
Some college or technical school	756 (34.8)	0.61	(0.46 - 0.82)
More than Completed 4 years of college	547 (25.2)	0.52	(0.46 - 0.82) (0.37 - 0.71)
	J+1 (20.2)	0.02	(0.57 - 0.71)
Baseline asthma history			- 1. · ·
No	Spin 190 b)	aci ¢ 5oci	elv.
Yes	292 (13.5)	1.30	(0/.98 - 1.72)
Child had health insurance		_ -	
No	214 (9.9)	Ref	
Yes	1897 (87.4)	0.72	(0.52 – 0.99)
Physical Activity			
Weekly days of outdoor sports			
0	353 (16.3)	Ref	
1-2	469 (21.6)	1.06	(0.75 - 1.50)
3-4	636 (29.3)	1.06	(0.76 - 1.46)
5-7	661 (30.5)	0.96	(0.69 - 1.34)
Prior 1-year no. of exercise classes [‡]	001 (00.0)	0.30	(0.00 - 1.07)
	1290 (62 6)	Ref	
0	1380 (63.6)		(0 E2 0 00)
1	550 (25.3)	0.69	(0.53 - 0.90)
≥2	119 (5.5)	0.41	(0.21 - 0.79)
Smoking			
Exposure to Second-hand Smoke		_	
No	1988 (91.6)	Ref	
Yes	93 (4.3)	1.08	(0.63 - 1.85)
Yes only when children are not present	39 (1.8)́	0.84	(0.35 - 2.00)
Exposure to Maternal Smoking In Utero	/ - /	-	· · · /
No	1977 (91.1)	Ref	
Yes	131 (6.0)	1.05	(0.67 - 1.64)
163	131 (0.0)	1.00	(0.07 - 1.04)

*Children in the Children's Health Study Cohort E (as described in METHODS) were enrolled in year 2002, and were followed-up from a mean age of 6.6 to 15.2 years old. Hazard ratios and 95% confidence intervals (CIs) are presented for univariate association analysis using cox proportional hazards models.

† Overweight children were defined as children having BMI ≥85 percentile compared to sex-specific CDC growth curve (21).

‡ Exercise classes include dance, aerobics, gymnastics or tumbling, martial arts, and other self-reported exercise classes.

§ Total number of subjects may differ due to missing values of different baseline variables.

American Journal of Respiratory and Critical Care Medicine

Copyright 2017 American Thoracic Society

Table 2. Associations between baseline histories of asthma and asthma-related health outcomes with the risk of developing obesity during a mean follow-up of seven years among children in the Children's Health Study Cohort E who were not obese at study entry^{*} (Total N=2171).

Baseline Histories		Ur	ivariate [†]	Covariate Adjusted [‡]	
	N (%)	Hazard Ratio	95% CI	Hazard Ratio	95% CI
Asthma					
No	1879 (86.5)	Ref		Ref	
Yes	292 (13.5)	1.30	(0.98 - 1.72)	1.51	(1.08 - 2.09)
Ever wheeze			. ,		. ,
No	1540 (70.9)	Ref		Ref	
Yes	582 (26.8)	1.06	(0.83 - 1.34)	1.42	(1.08 – 1.85)
Wheeze in prior 1 year on lournal of Doonirata No	r 4876(86.4)i	ical C	are Med	icipe	
Yes	272 (12.5)	0.97	(0.70 - 1.33)	1.22	(0.84 - 1.78)
Age of asthma onset			. ,		
No asthma	1879 (86,6)	Ret	nciety	Ref	
Early onset asthma (≤4 years)	178 (8.2)	1.22	(0.85 - 1.75)	1.46	(0.95 - 2.23)
Late onset asthma (>4 years)	46 (2.1)	1.29	(0.65 - 2.55)	1.39	(0.62 - 3.08)
Active asthma			· · · · ·		(, , , , , , , , , , , , , , , , , , ,
Have no baseline asthma history and no current wheeze	1750 (80.6)	Ref		Ref	
Have no baseline asthma history, but have current wheeze	108 (5.0)	0.56	(0.30 - 1.04)	0.91	(0.46 - 1.77)
Have baseline asthma history, but no current wheeze	126 (5.8)	1.22	(0.80 - 1.86)	1.42	(0.93 - 2.19)
Have baseline asthma history and current wheeze	164 (7.6)	1.26	(0.88 - 1.81)	1.50	(0.96 - 2.33)

*Children in the Children's Health Study Cohort E (as described in METHODS) were enrolled in year 2002, and were followed-up from a mean age of 6.6 to 15.2 years old. Hazard ratios and 95% confidence intervals (CIs) are presented for association analysis using various models.

†Univariate: model used sex-specific baseline hazard.

‡Covariates adjusted: model was adjusted for baseline characteristics including a fixed effect of the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage (yes/no), number of exercise classes attended in the previous year, weekly days of outdoor sports, overweight status (yes/no), second-hand smoke and maternal smoking exposure *in utero*., and follow-up time-dependent variables including number of exercise classes attended, weekly days of outdoor sports, and any asthma medication use with a sex-specific baseline hazard.

§Total number of subjects may differ due to missing values of different variables of baseline asthma history and related phenotypes.

Table 3. Joint associations of asthma and asthma medication use with the risk of developing obesity during a mean follow-up of seven years among children in the Children's Health Study Cohort E who were not obese at study entry^{*} (Total N=2171).

Deceline Historics of Asthma and Mediastics use	NL (0() [‡]	Multivaria	ate Model [†]
Baseline Histories of Asthma and Medication use	N (%) [‡]	Hazard Ratio	95% CI
Baseline asthma history			
No	1879 (86.5)	Ref	
Yes	292 (13.5)	2.21	(1.47 – 3.34)
Use rescue medications			
No	1866 (86.0)	Ref	
Yes American Journal of Res	256 (11-8)	and p.57itica	(0.33-0.96) dicin
Use controller medications	spiratory a		
No	2008 (92.5)	Ref	
Non-steroid controller medication Inhaled corticosteroid	Ang (4.6)	Th	(0.35 - 4.97) (0.49 - 1.93)
Use additional steroid pills or liquids	. ,		· ·
No	2081 (95.9)	Ref	
Yes	41 (1.9)	0.87	(0.35 – 2.19)

* Children in the Children's Health Study Cohort E (as described in METHODS) were enrolled in year 2002, and were followed-up from a mean age of 6.6 to 15.2 years old. Hazard ratios and 95% confidence intervals (CIs) are presented for association analysis using various models.

† Multivariate Model: multivariate cox proportional hazards model was used to jointly model obesity incidence rate as a function of baseline histories of asthma, use of rescue medications, controller medications and additional steroid pills or liquids, adjusting for baseline characteristics including a fixed effect of the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage (yes/no), number of exercise classes attended in the previous year, weekly days of outdoor sports, overweight status (yes/no), second-hand smoke and maternal smoking exposure *in utero*., and time-dependent variables including number of exercise classes attended, and any asthma medication use during the follow-up with a sex-specific baseline hazard.

‡ Total number of subjects may differ due to missing values of different baseline variables of asthma history and asthma medication use.

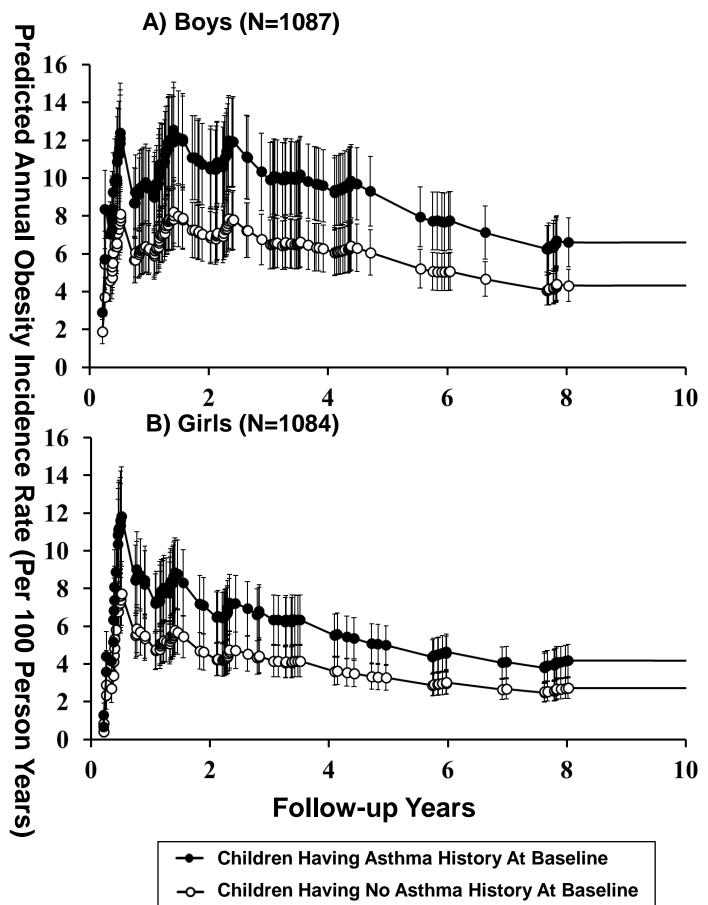


Table E1. Stratified associations between baseline histories of asthma and asthma-related health with the risk of developing obesity during a mean follow-up of seven years among <u>boys and girls</u> in the Children's Health Study Cohort E^{*}.

Deseline Histories	В	1087)	Girls (n=1084)			
Baseline Histories	N (%) [‡]	HR	95% CI	N (%) [‡]	HR	95% CI
Asthma						
No	906 (83.4)	Ref		973 (89.8)	Ref	
Yes	181 (16.7)	1.53	(1.04 - 2.26)	111 (10.2)	1.05	(0.54 – 2.05)
Ever wheeze	, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,		· · · · · ·
No	724 (66.6)	Ref		816 (75.3)	Ref	
Yes	336 (30.9)	1.57	(1.12 - 2.20)	246 (22.7)	0.97	(0.62 - 1.52)
Wheeze in prior 1 year	()		(, , , , , , , , , , , , , , , , , , ,	()		,
No	909 (83.6)	Ref		967 (89.2)	Ref	
Yes	+ 467 (15,4)	1.40;	tica1Cate	105 (9.7)	0.85	(0.46 - 1.57)
Age of asthma onset	lory and			MEdicil		. ,
No asthma	906 (83.4)	Ref		973 (89.8)	Ref	
Early onset asthma (≤4 years)	111 (10.2)	1.53	(0.93 - 2.52)	67 (6.2)	1.12	(0.48 - 2.65)
Late onset asthma (>4 years)	ri 82 (2.9)	h0.940	cio Scoiet	V 14 (1.3)	1.60	(0.40 - 6.42)
Active asthma		nora		y ()		()
Have no baseline asthma history and no current wheeze	837 (77.0)	Ref		913 (84.2)	Ref	
Have no baseline asthma history, but have current wheeze	60 (5.5)	1.23	(0.57 - 2.65)	48 (4.4)	0.37	(0.10 - 1.29)
Have baseline asthma history, but no current wheeze	72 (6.6)	1.57	(0.96 - 2.57)	54 (5.0)	0.65	(0.19 - 2.22)
Have baseline asthma history and current wheeze	107(9.8)	1.43	(0.84 - 2.42)	57 (5.3)	1.25	(0.59 - 2.67)

* Children in the Children's Health Study Cohort E (as described in METHODS) were enrolled in year 2002, and were followed-up from a mean age of 6.6 to 15.2 years old. † Cox proportional hazards model was adjusted for baseline characteristics including a fixed effect of the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage (yes/no), number of exercise classes attended in the previous year, weekly days of outdoor sports, overweight status (yes/no), second-hand smoke and maternal smoking exposure *in utero*., and follow-up time-dependent variables including number of exercise classes attended, weekly days of outdoor sports and any asthma medication use. Hazard ratios (HRs) and 95% confidence intervals (CIs) are presented.

Table E2. Stratified associations between baseline histories of asthma and asthma-related health with the risk of developing obesity during a mean follow-up of seven years among <u>non-Hispanic and Hispanic White children</u> in the Children's Health Study Cohort E^{*}.

Baseline Histories	Non-Hisp	Non-Hispanic White (n=687)				(n=1235)
	N (%) [‡]	HR [†]	95% CI	N (%) [‡]	HR [†]	95% CI
Asthma						
No	582 (84.7)	Ref		1084 (87.8)	Ref	
Yes	105 (15.3)	0.88	(0.41 - 1.85)	151 (12.2)	1.42	(0.92 - 2.21)
Ever wheeze			. ,			. ,
No	461 (67.1)	Ref		896 (72.6)	Ref	
Yes	216 (31.4)	1.25	(0.71 - 2.22)	304 (24.6)	1.18	(0.83 - 1.68)
Wheeze in prior 1 year			. ,			. ,
No	569 (82.8)	Ref		1095 (88.7)	Ref	
Yes	atol ¹⁶ (and	0.97	(0,49-1.90)	119 (96)	1.02	(0.60 - 1.73)
Age of asthma onset	alory and	Cinica		ieucine		
No asthma	582 (84.7)	Ref		1084 (87.8)	Ref	
Early onset asthma (≤4 years)	67 (9.8)	0.94	(0.36 - 2.47)	91 (7.4)	1.27	(0.69 - 2.32)
Late onset asthma (>4 years)	ericanTh	oragic	(0.23-3,60)/	18 (1.5)	0.81	(0.16 - 4.14)
Active asthma			Coology			,
Have no baseline asthma history and no current wheeze	532 (77.4)	Ref		1019 (82.5)	Ref	
Have no baseline asthma history, but have current wheeze	· · · · ·	0.91	(0.34 - 2.42)	46 (3.7)	0.86	(0.32 - 2.29)
Have baseline asthma history, but no current wheeze	37 (5.4)	0.70	(0.17 - 2.90)	76 (6.2)	1.61	(0.98 - 2.64)
Have baseline asthma history and current wheeze	68 (9.9)	0.94	(0.40 - 2.20)	73 (5.9)	1.07	(0.52 - 2.18)

* Children in the Children's Health Study Cohort E (as described in METHODS) were enrolled in year 2002, and were followed-up from a mean age of 6.6 to 15.2 years old. † Cox proportional hazards model was adjusted for baseline characteristics including a fixed effect of the community, age, annual family income, parental education levels, children's health insurance coverage (yes/no), number of exercise classes attended in the previous year, weekly days of outdoor sports, overweight status (yes/no), second-hand smoke and maternal smoking exposure *in utero*., and follow-up time-dependent variables including number of exercise classes attended, weekly days of outdoor sports and any asthma medication use with a sex-specific baseline hazard. Hazard ratios (HRs) and 95% confidence intervals (CIs) are presented.

Table E3. Stratified associations between baseline histories of asthma and asthma-related health with the risk of developing obesity during a mean follow-up of seven years among <u>baseline normal weight and overweight</u> <u>children</u> in the Children's Health Study Cohort E^{*}.

Deceline Historice	Baseline no	veight (n=1773)	Baseline overweight (n=398)			
Baseline Histories	N (%) [‡]	HR [†]	95% CI	N (%) [‡]	HR [†]	95% CI
Asthma						
No	1541 (86.9)	Ref		338 (84.9)	Ref	
Yes	232 (13.1)	1.45	(0.86 - 2.43)	60 (15.1)	1.63	(1.09 – 2.44)
Ever Wheeze	. ,		. , , , , , , , , , , , , , , , , , , ,	. ,		
No	1256 (70.8)	Ref		284 (71.4)	Ref	
Yes	479 (27.0)	1.36	(0.90 - 2.04)	103 (25.9)	1.48	(1.05 - 2.08)
Wheeze in prior 1 year	, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·
No	1530 (86.3)	Ref		346 (86.9)	Ref	
Yes	+ 227 (12,8)	1.13	ticaf ⁷ Cafe	A5 (41,3)	1.44	(0.90 - 2.31)
Age of asthma onset	lui y anc			MEAICI		. ,
No asthma	1541 (86.9)	Ref		338 (84.9)	Ref	
Early onset asthma (≤4 years)	142 (8.0)	1.43	(0.75 – 2.75)	36 (9.1)	1.69	(0.99 – 2.87)
Late onset asthma (>4 years)	ri85(2.0)	<u>ነ ሐ6</u> ⊅	ci@\$ 500 #9t	V 11 (2.8)	1.15	(0.39 - 3.41)
Active Asthma		IOIU		y ()		(/
Have no baseline asthma history and no current wheeze	1430 (80.7)	Ref		320 (80.4)	Ref	
Have no baseline asthma history, but have current wheeze	96 (5.4)	0.62	(0.22 - 1.73)	12 (3.0)	1.37	(0.59 - 3.19)
Have baseline asthma history, but no current wheeze	100 (5.6)	1.14	(0.51 - 2.57)	26 (6.5)	1.59	(0.94 - 2.71)
Have baseline asthma history and current wheeze	131(7.4)	1.58	(0.84 - 2.96)	33 (8.3)	1.60	(0.92 - 2.77)

* Children in the Children's Health Study Cohort E (as described in METHODS) were enrolled in year 2002, and were followed-up from a mean age of 6.6 to 15.2 years old. † Cox proportional hazards model was adjusted for baseline characteristics including a fixed effect of the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage (yes/no), number of exercise classes attended in the previous year, weekly days of outdoor sports, second-hand smoke and maternal smoking exposure *in utero.*, and follow-up time-dependent variables including number of exercise classes attended, weekly days of outdoor sports and any asthma medication use with a sex-specific baseline hazard. Hazard ratios (HRs) and 95% confidence intervals (Cls) are presented.

Table E4. Associations between baseline history of asthma and asthma-related health with <u>the risk of becoming</u> <u>overweight and obese</u> during a mean follow-up of seven years among 1773 children in the Children's Health Study Cohort E^{*} who were <u>normal-weighted at the study entry</u>.

		Un	nivariate [†]	Fully Adjusted [‡]	
Baseline Histories	N (%)§	Hazard Ratio	95% CI	Hazard Ratio	95% CI
Asthma					
No	1541 (86.9)	Ref		Ref	
Yes	232 (13.1)	1.10	(0.82 - 1.46)	1.22	(0.89 - 1.67)
Ever Wheeze					
No	1256 (70.8)	Ref		Ref	
Yes	479 (27.0)	1.19	(0.95 - 1.47)	1.30	(1.03 - 1.63)
Wheeze in prior 1 year			. ,		
No	+ 1530 (86.3)	Refi	al Caro M	Ref	ino
Yes	227 (12.8)	9:17:0	$a_{(0.88} a_{1.56})$	1.23	(0.90 - 1.68)
Age of asthma onset					
No asthma	1541 (86.9)	Ref		Ref	
Early onset asthma (≤4 years)	142 (8.0) h	notarci	c(998c1₹9)√	1.40	(0.96 - 2.04)
Late onset asthma (>4 years)	35 (2.0)	1.34	(0.68 - 2.65)	1.41	(0.70 - 2.84)
Active Asthma	()		(, , , , , , , , , , , , , , , , , , ,		(, , , , , , , , , , , , , , , , , , ,
Have no baseline asthma history and no current wheeze	1430 (80.7)	Ref		Ref	
Have no baseline asthma history, but have current wheeze	96 (5.4)	1.18	(0.77 - 1.80)	1.20	(0.77 - 1.87)
Have baseline asthma history, but no current wheeze	100 (5.6)	1.02	(0.66 - 1.57)	1.18	(0.76 - 1.84)
Have baseline asthma history and current wheeze	131 (̈́7.4)́	1.17	(0.81 - 1.69)	1.30	(0.87 - 1.93)

* Children in the Children's Health Study Cohort E (as described in METHODS) were enrolled in year 2002, and were followed-up from a mean age of 6.6 to 15.2 years old. Hazard ratios and 95% confidence intervals (CIs) are presented for association analysis using various models.

† Univariate: Cox proportional hazards model used sex-specific baseline hazard.

‡ Fully adjusted: Cox proportional hazards model was adjusted for baseline characteristics including a fixed effect of the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage (yes/no), number of exercise classes attended in the previous year, weekly days of outdoor sports, second-hand smoke and maternal smoking exposure *in utero*., and follow-up time-dependent variables including number of exercise classes attended, weekly days of outdoor sports and any asthma medication use with a sex-specific baseline hazard.

Table E5. Associations between baseline histories of asthma and asthma-related health with the risk of developing obesity during a mean follow-up of seven years among 1924 children in the Children's Health Study Cohort E^{*} who were not obese at study entry and who did not have new-onset asthma during the study follow-up.

		Un	ivariate†	Fully Adjusted‡	
Baseline Histories	N (%)§	Hazard Ratio	95% CI	Hazard Ratio	95% CI
Asthma					
No	1632 (84.8)	Ref		Ref	
Yes	292 (15.2)	1.21	(0.91 - 1.61)	1.50	(1.07 - 2.10)
Ever Wheeze			. ,		. ,
No	1395 (72.5)	Ref		Ref	
Yes	489 (25.4) [´]	1.12	(0.87 - 1.43)	1.53	(1.16 - 2.03)
Wheeze in prior 1 year	()		X Z		, , , , , , , , , , , , , , , , , , ,
No	1674 (87.0)	C Ref	I Caro M	Refin	0
Yes	231 (12.0)	<u> </u>	$al_{(0.66)}$		C (0.82 - 1.79)
Age of asthma onset	()		X Z		, , , , , , , , , , , , , , , , , , ,
No asthma	1632 (84.8)	Ref			
Early onset asthma (≤4 years)	ric128(9.8)h	റ ന എ.114 ന	9079-16 4)	1.44	(0.93 - 2.22)
Late onset asthma (>4 years)	46 (2.4)	1.20	(0.61 - 2.38)	1.40	(0.63 - 3.12)
Active Asthma			((************
Have no baseline asthma history and no current wheeze	1548 (80.5)	Ref		Ref	
Have no baseline asthma history, but have current wheeze	67 (3.5)	0.35	(0.13 - 0.93)	0.67	(0.27 - 1.61)
Have baseline asthma history, but no current wheeze	126 (6.6)	1.14	(0.79 - 1.64)	1.38	(0.89 - 2.13)
Have baseline asthma history and current wheeze	164 (8.5)	1.18	(0.82 - 1.69)	1.51	(0.96 - 2.37)

* Children in the Children's Health Study Cohort E (as described in METHODS) were enrolled in year 2002, and were followed-up from a mean age of 6.6 to 15.2 years old. Hazard ratios and 95% confidence intervals (CIs) are presented for association analysis using various models.

† Univariate: Cox proportional hazards model used sex-specific baseline hazard.

‡ Fully adjusted: Cox proportional hazards model was adjusted for baseline characteristics including a fixed effect of the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage (yes/no), number of exercise classes attended in the previous year, weekly days of outdoor sports, second-hand smoke and maternal smoking exposure *in utero*., and follow-up time-dependent variables including number of exercise classes attended, weekly days of outdoor sports, and any asthma medication use with a sex-specific baseline hazard.

Table E6. Sensitivity Analysis of associations between baseline histories of asthma and asthma-related health with <u>the risk of developing obesity and maintaining obesity for more than two follow-up visits</u> during a mean follow-up of seven years among 2051 children in the Children's Health Study Cohort E^{*} who were not obese at study entry.

		Un	ivariate [†]	Fully Adjusted [‡]	
Baseline Histories	N (%) [§]	Hazard Ratio	95% CI	Hazard Ratio	95% CI
Asthma					
No	1778 (86.7)	Ref		Ref	
Yes	273 (13.3)	1.35	(0.95 - 1.90)	1.71	(1.13 - 2.57)
Ever Wheeze					
No	1456 (71.0)	Ref		Ref	
Yes	546 (26.6)	1.02	(0.76 - 1.38)	1.40	(1.00 - 1.95)
Wheeze in prior Event an Journal of Kespira	itory and	Critica	1 (0.76 - 1.38) Care M	edicine	9
No	1771 (86.4)	Ref		Ref	
Yes	257 (12.5)	0.99	(0.67 - 1.47)	1.35	(0.86 - 2.11)
Age of asthma onset No asthma	ric78(86.7)	oracic	Society		
Early onset asthma (≤4 years)	169 (8.2)	1.36	(0.89 - 2.07)	1.72	(1.04 - 2.83)
Late onset asthma (>4 years)	44 (2.2)	1.52	(0.70 - 3.27)	1.74	(0.70 - 4.30)
Active Asthma	· · ·		, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,
Have no baseline asthma history and no current wheeze	1654 (80.6)	Ref		Ref	
Have no baseline asthma history, but have current wheeze	103 (5.0)	0.44	(0.18 - 1.06)	0.84	(0.32 - 2.19)
Have baseline asthma history, but no current wheeze	117 (5.7)	1.14	(0.67 - 1.96)	1.51	(0.86 - 2.67)
Have baseline asthma history and current wheeze	154 (7.5)	1.37	(0.89 - 2.11)	1.73	(1.05 - 2.85)

* Children in the Children's Health Study Cohort E (as described in METHODS) were enrolled in year 2002, and were followed-up from a mean age of 6.6 to 15.2 years old. Obesity incidence was defined as children who were observed to be obese in at least 2 follow-up visits. 120 children who developed obesity at only one follow-up visit were excluded from this analysis. Hazard ratios and 95% confidence intervals (CIs) are presented for association analysis using various models.

† Univariate: Cox proportional hazards model used sex-specific baseline hazard.

‡ Fully adjusted: Cox proportional hazards model was adjusted for baseline characteristics including a fixed effect of the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage (yes/no), number of exercise classes attended in the previous year, weekly days of outdoor sports, second-hand smoke and maternal smoking exposure *in utero*., and follow-up time-dependent variables including number of exercise classes attended, weekly days of outdoor sports and any asthma medication use with a sex-specific baseline hazard.

Table E7. Associations between baseline histories of asthma and asthma-related health with the risk of developing obesity during the study follow-up among <u>1326 children who completed the full ten-year study follow-up</u> in the Children's Health Study Cohort E^{*} .

	_	Un	ivariate [†]	Fully Adjusted [‡]	
Baseline Histories	N (%) [§]	Hazard Ratio	95% CI	Hazard Ratio	95% CI
Asthma					
No	1142 (86.1)	Ref		Ref	
Yes	184 (13.9)	1.23	(0.92 - 1.64)	1.43	(1.05 - 1.96)
Ever Wheeze					
No	954 (72.0)	Ref		Ref	
Yes	340 (25.6)	1.10	(0.87 - 1.39)	1.51	(1.16 - 1.97)
Wheeze in prior 1 year					. ,
No	1141 (86.1)	C rRef	l Caro M	Refin	
Yes	171 (12.9)	0.89-0	$al_{(0.65)}$	CHIMIN	💆 (0.77 - 1.60)
Age of asthma onset					
No asthma	1142 (86.1)	Ref			
Early onset asthma (≤4 years)	ric120(83)h	oradic	S(0.81-1.69)	1.47	(0.97 - 2.20)
Late onset asthma (>4 years)	29 (2.2)	1.17	(0.59 - 2.35)	1.21	(0.54 - 2.67)
Active Asthma			(, , , , , , , , , , , , , , , , , , ,		x y
Have no baseline asthma history and no current wheeze	1065 (80.3)	Ref		Ref	
Have no baseline asthma history, but have current wheeze	64 (4.8)	0.53	(0.28 - 0.98)	0.78	(0.39 - 1.54)
Have baseline asthma history, but no current wheeze	76 (5.7)	1.21	(0.79 - 1.85)	1.35	(0.88 - 2.08)
Have baseline asthma history and current wheeze	107 (8.1́)	1.15	(0.80 - 1.65)	1.39	(0.92 - 2.10)

* The study design of Children in the Children's Health Study Cohort E is described in METHODS. Results in this table are from a subsample of the cohort who had complete 10-year follow-ups. Hazard ratios and 95% confidence intervals (CIs) are presented for association analysis using various models.

† Univariate: Cox proportional hazards model used sex-specific baseline hazard.

‡ Covariates adjusted: Cox proportional hazards model was adjusted for baseline characteristics including a fixed effect of the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage (yes/no), number of exercise classes attended in the previous year, weekly days of outdoor sports, overweight status (yes/no), second-hand smoke and maternal smoking exposure *in utero*., and follow-up time-dependent variables including number of exercise classes attended, weekly days of outdoor sports and any asthma medication use with a sex-specific baseline hazard.

Table E8. Univariate associations of child and home characteristics with the risk of developing obesity during a mean follow-up of six years among 2684 children in the <u>replication sample of Children's Health Study Cohorts C and D</u>^{*} who were not obese at study entry.

Baseline variables	N (%)§	Hazard Ratio	95% CI
Age (Years)			
[8-10)	1433 (53.4)	Ref	
[10-11)	1184 (44.1)	1.29	(1.00 - 1.67)
[11-13]	67 (2.5)	1.39	(0.56 - 3.42)
Sex			
Girls	1360 (50.7)	Ref	
Boys	1324 (49.3)	1.50	(1.18 - 1.90)
Overweight [†]	()		, , , , , , , , , , , , , , , , , , ,
No	2231 (83.1)	Ref	
Yes	453 (16.9)	24.37	(18.33 - 32.39)
Ethnicity			· · · · · · · · · · · · · · · · · · ·
Non-Hispanic Whites	1536 (57.2)	Ref	
Hispanic Whites	219 (8.2)	1.04	(0.66 - 1.65)
Others	899 (33.5)	1.26	(0.98 - 1.63)
Annual Family income			(, , , , , , , , , , , , , , , , , , ,
Up to \$14,999	367 (13.7)	Ref	
\$15,000 to \$49,999	942 (35 1) -	0.96	(0.67 - 1.36)
\$50,000 or more	V1@2197.7	riticã55Car	`e (0.47€6186€II
Parental education			
Less than or completed 12th grade	833 (31.0)	Ref	
Some college or technical school	1161 (43.3)	0.86	(0.65 - 1.15)
More than Completed 4 years of college		acio Soci	
Baseline asthma history			ory in the
No	2319 (86.4)	Ref	
Yes	365 (13.6)	1.19	(0.86 - 1.65)
Child had health insurance			(0.00 1.00)
No	375 (14.0)	Ref	
Yes	2265 (84.4)	0.88	(0.63 – 1.23)
Physical Activity	(*)	0.00	(0.000)
Prior 1-year no. of sports teams [‡]			
	1185 (44.2)	Ref	
1	832 (31.0)	0.57	(0.43 - 0.78)
≥2	614 (22.9)	0.72	(0.53 - 0.98)
Smoking	011(22:0)	0.72	(0.00 0.00)
Exposure to Second-hand Smoke in the Past			
No	1851 (69.0)	Ref	
Yes	740 (27.6)	1.13	(0.87 - 1.47)
Current Exposure to Second-hand Smoke	140 (21.0)	1.10	
No	2139 (79.7)	Ref	
Yes	499 (18.6)	1.14	(1.02 - 1.83)

* Children in the Children's Health Study Cohorts C and D (as described in METHODS) were enrolled in year 1992 and 1994, and were followed-up from a mean age of 9.7 to 16.8 years old. Hazard ratios and 95% confidence intervals (CIs) are presented for univariate association analysis using cox proportional hazards models.

† Overweight children were defined as children having BMI ≥85 percentile compared to sex-specific CDC growth curve (21).

\$ Sports teams include baseball, basketball, football, soccer, swimming, tennis, volleyball and other self-reported specified sports.

 Table E9. Associations between baseline histories of asthma and asthma-related health outcomes with the risk of developing obesity during a mean follow-up of six years among 2684 children in the replication sample of Children's Health Study cohorts C and D* who were not obese at study entry.

Baseline Histories	0	Un	ivariate [†]	Covariate Adjusted [‡]	
	N (%) [§]	Hazard Ratio	95% CI	Hazard Ratio	95% CI
Asthma					
No	2319 (86.4)	Ref		Ref	
Yes	365 (13.6)	1.19	(0.86 - 1.65)	1.56	(1.11 – 2.19)
Ever wheeze			. ,		
No	1731 (64.5)	Ref		Ref	
Yes	839 (31.3)	1.22	(0.95 - 1.57)	1.28	(0.98 – 1.67)
Wheeze in prign 1 genican Journal of Respirato	orv and Crit	ical Ca	are Medi	cine	
No	1904 (70.9)	Ref		Ref	
Yes	440 (16.4)	1.36	(1.01 - 1.84)	1.21	(0.89 - 1.65)
Age of asthma onset					. ,
No asthma	123197881421	CICREDO	ciety	Ref	
Early onset asthma (≤4 years)	316 (11.8)	1.19	(0.85 – 1.68)	1.65	(1.16 – 2.35)
Late onset asthma (>4 years)	48 (1.8)	1.21	(0.50 - 2.92)	1.06	(0.40 – 2.75)
Active asthma	()		((, , , , , , , , , , , , , , , , , , ,
Have no baseline asthma history and no current wheeze	1809 (67.4)	Ref		Ref	
Have no baseline asthma history, but have current wheeze	224 (8.4)	1.11	(0.72 - 1.72)	0.80	(0.51 - 1.25)
Have baseline asthma history, but no current wheeze	95 (3.5)	0.84	(0.41 - 1.71)	1.01	(0.48 - 2.11)
Have baseline asthma history and current wheeze	216 (8.1)	1.58	(1.09 - 1.30)	1.86	(1.26 - 2.75)

*Children in the Children's Health Study Cohorts C and D (as described in METHODS) were enrolled in year 1992 and 1994, and were followed-up from a mean age of 6.6 to 15.2

years old. Hazard ratios and 95% confidence intervals (CIs) are presented for association analysis using various models.

†Univariate: Cox proportional hazards model used sex-specific baseline hazard.

‡Covariates adjusted: Cox proportional hazards model was adjusted for baseline characteristics including a fixed effect of the community, age, ethnicity, annual family income, parental education levels, children's health insurance coverage (yes/no), number of teams sports attended in the previous year, overweight status (yes/no), past and current second-hand smoke, and follow-up number of teams sports attended as a time-dependent variable with a sex-specific baseline hazard.

Baseline variables	N (%) [§]
Age (Years)	
(4-5)	2 (0.4)
(5-6)	118 (22.1)
(6-7)	249 (46.5)
(7-8)	141 (26.4)
(8-9)	25 (4.7)
Sex	
Girls	240 (44.9)
Boys	295 (55.1)
Overweight [†]	
No	455 (85.1)
Yes	80 (15.0)
Ethnicity	
Non-Hispanic Whites	119 (22.2)
Hispanic Whites	335 (62.6)
Others	81 (15.1)
Income	
Less than \$50,000	274 (51.2)
\$50,000 to \$99,999	95 (17.8)
\$100,000 or more	47 (8.8)
Education	onumer Critical Caro Madia
Less than 12th grade	ory and Critical Care Medic
Completed grade 12 Some college or technical school	116 (21.7)
More than Completed 4 years of college	154 (28.8) 81 (15.1)
Child had health insurance	\mathbf{T}
No	rican Thoracic Society
Yes	382 (71.4)
Physical Activity	
Weekly days of outdoor sports	
0	91 (17.0)
1-2	128 (23.9)
3-4	133 (24.9)
5-7	142 (26.5)
Prior 1-year no. of exercise classes [‡]	
0	366 (68.4)
1	98 (18.3)
≥2	16 (3.0)
Smoking	
Second-hand Smoke	
No	447 (83.6)
Yes	36 (6.7)
Yes only when children are not present	9 (1.7)
Maternal Smoking Exposure In Utero	
No	441 (82.4)
Yes	45 (8.4)

Table E10. Characteristics of 535 children in the Children's Health Study Cohort E^{*} who were non-obese at study entry and were excluded from the main analysis in this paper.

*Children in the Children's Health Study Cohort E (as described in METHODS) were enrolled in year 2002, and were followed-up from a mean age of 6.6 to 15.2 years old. † Overweight among children was defined as ≥85 percentile compared to sex-specific CDC growth curve. ‡ Exercise classes include dance, aerobics, gymnastics or tumbling, martial arts, and other self-reported exercise classes. §Total number of subjects may differ due to missing values of different baseline variables.