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Psychometric Assessment:  245 
Cross-sectional and longitudinal cognitive characteristics of all subjects are shown in Table 2. 246 

We did not find any statistically significant differences between OSA indices and cognition across 247 
healthy and OSA groups at baseline or longitudinally. To assess the relationship between 248 
longitudinal changes in CSF Aβ42 and cognitive performance, we performed Pearson correlation 249 
analyses comparing annual rate of change of CSF Aβ42 and annual change in cognitive z-scores. 250 
No statistically significant correlations were found: Logic 2 (r=-.12, n.s.), AF (r=.15, n.s.), VF 251 
(r=.09, n.s.), BNT (r=.006, n.s.), DSST (r=.16, n.s.), TMT-A (r=.001, n.s.) and TMT-B (r=-.08, n.s.). 252 
 253 
CSF and PET Assessment: 254 

From the 208 participants, 179 subjects performed a lumbar puncture (LP) at baseline. A 255 
second LP was obtained at follow-up in 104 subjects 2.42±0.88 years later. 86 subjects performed 256 
PiB scans at baseline.  A second PiB scan evaluation was obtained at follow-up in 34 subjects 257 
2.50±0.39 years later. 57 participants performed both the LP and the PET scans at baseline. 25 258 
participants performed the LP and PET scans at both baseline and follow-up (Figure 5). We will 259 
refer to participants with both baseline and follow-up biomarker data available as “completers”, 260 
whereas subjects with only baseline biomarkers data will be referred to as “non-completers”. 261 
There were no differences between completers and non-completers, in terms of (age [t=-.27, n.s.], 262 
sex [X2=.002, n.s.], BMI [t=.40, n.s.], MMSE [t=.00, n.s.], years of education [t=.17, n.s.], ApoE4 263 
status [X2=.93, n.s.], TST [t=1.18, n.s.], AHIall [t=.82, n.s.] or AHI4% [t=.88, n.s.]). Summary 264 
statistics of baseline, and annual changes of AD biomarkers are shown in Table 3. No significant 265 
associations were observed between annual changes in CSF Aβ42 and age (F1,93=2.23, p=.13, 266 
β=-1.68, 95% Confidence Interval [CI]= -.39 to .55, p=.13), sex (F1,93=.64, p=.42, β=13.64, 95% 267 
CI = -20.17 to 47.47, p=.42 ), BMI (F1,93=.16, p=.69,  β=-.61, 95% CI=-3.67 to 2.44, p=.69) or 268 
ApoE4 (F1,93=.42, p=.51, β=-11.35, 95% CI= -46.03 to 23.32, p=.51). At cross-section and 269 
longitudinally, we did not find any significant differences among the 3 OSA severity groups for 270 
CSF P-Tau or T-Tau. Similarly, no cross-sectional or longitudinal effects were found for CSF Aβ42 271 
across OSA severity groups using univariate analysis. No significant correlation between CSF 272 
Aβ42 and AHI indices were observed at cross-section.  273 

However, significant correlations were observed between longitudinal change in CSF Aβ42 274 
levels and AHIall/AHI4 (rho=-0.24, p<.05, rho=-0.23, p<.05, respectively) and after controlling for 275 
age, sex, BMI and ApoE4 (rho=-0.27, p<.05, rho=-0.24, p<.05, respectively). Significant 276 
associations were also observed between annual rate of change of CSF Aβ42 and AHI indices at 277 
baseline using hierarchical linear regression model (shown in table 4), including annual rate of 278 
change of CSF Aβ42 as dependent and AHI indices (lnAHI4 and lnAHIall) as independent 279 
variables, before (F1,92=5.41, p<.05, and F1,93=4.72, p<.05 respectively)  and after accounting for 280 
age, sex, BMI and ApoE4 (F1,88=4.26, p<.05 and F1,87=4.36, p<.05, respectively). The effect of the 281 
type of sleep recording device and TST were not significant, thus we excluded them from the final 282 
model. Figure 1 shows the relationship between delta change in CSF Aβ42 and the AHI indices at 283 
baseline. Sensitivity analyses were perfomed excluding 5 subjects whose baseline sleep 284 
evaluation was done after their first CSF measurements. Association between lnAHI4, lnAHIall, 285 
and annual delta CSF Aβ42 remained unchanged. 286 

 287 
Similarly, on univariate analysis no difference in ADPiB-mask was observed between OSA 288 

severity groups, and no significant correlation between ADPiB-mask and AHI indices were 289 
observed at cross-section. However, correlations were observed between longitudinal change in 290 
ADPiB-mask and AHIall or AHI4 (rho=0.374, p<.05, rho=0.302, p=0.09, respectively) after 291 
controlling for age, sex, BMI and ApoE4. Using the same hierarchical linear regression model as 292 
for CSF Aβ42, no statistically significant associations were observed between annual rate of 293 
change of ADPiB-mask and AHIs, including annual rate of change of ADPiB-mask as dependent 294 
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and AHI indices at baseline as independent variables after accounting for age, sex, BMI and 295 
ApoE4. LnAHIall and lnAHI4 were not associated with increases in ADPiB-mask most likely due to 296 
the small sample size as there was a trend for lnAHIall (F1,28=2.96, p=.09 and F1, 28=2.32, n.s. 297 
respectively). Figure 2 shows the relationship between delta change in ADPiB-mask and the AHIall 298 
index at baseline, both variables were corrected for normal distribution by log transformation.  299 

Further, we analyzed the association between longitudinal change in CSF Aβ42 and ADPiB-300 
mask. Using a Pearson correlation, a significant negative correlation between longitudinal change 301 
in CSF Aβ42 and ADPiB-mask was observed (r=-.44, p<.05). Using an ADPiB-mask SUVR ≥1.4 to 302 
define presence of brain amyloid deposition (PiB+),30-32 a secondary analysis performed only in 303 
the initial cross-sectional cases, revealed a significant difference between the slopes of PiB+ and 304 
PiB- cases (Figure 3). This was confirmed by the presence of an interaction between PiB status 305 
and lnAHI4% (F1,29=5.54, p<.05) as well as a positive trend between AHI4% and PiB uptake in 306 
PiB+ subjects (rho=0.67, p=.07). Similar findings were observed for AHIall (data not shown). 307 
Figure 3 shows the relationships between the AHI4% and PiB SUVR uptake when comparing 308 
PiB+ vs. PiB- groups. 309 

 310 
 311 

DISCUSSION: 312 
The primary objective of this study was to determine if severity of OSA in cognitively normal 313 

elderly is associated with CSF and PET AD-biomarkers at cross-section and their longitudinal 314 
change across an approximate 2 year period. Our initial finding revealed that OSA was common 315 
and affected 53% of our cognitively normal community-dwelling cohort. Second, we demonstrated 316 
that baseline OSA severity was associated with two-year longitudinal decreases in CSF Aβ42 and 317 
a trend towards increases in cortical PiB-PET uptake. Such changes are potentially consistent 318 
with increased brain amyloid burden, which were also observed in our cohort (i.e., a negative 319 
correlation between longitudinal change in CSF Aβ42 and ADPiB-mask), suggesting that OSA may 320 
play a role in amyloid deposition in late-life. Moreover, the magnitude of these changes was higher 321 
than the one predicted by the presence of the ApoE4 allele alone (Table 4), which to date is 322 
considered the most important risk factor for sporadic AD. AHIall, which includes hypopneas 323 
associated with oxygen desaturation or arousals, was a better predictor of longitudinal increases 324 
in amyloid burden than AHI4%, which includes only hypopneas associated with 4% oxygen 325 
desaturation. This raises the possibility that sleep fragmentation is a more critical 326 
pathophysiological mechanism by which OSA contributes to AD risk. However, AHIall and AHI4% 327 
were highly correlated in our cohort (r=0.91, p<.01) and this study was unable to differentiate the 328 
individual effects of sleep fragmentation versus intermittent hypoxia.  329 

 330 
Although OSA severity was associated with increases in brain amyloid burden, it was not 331 

predictive of cognitive deterioration based on neuropsychological performance, which is in 332 
agreement with prior studies.33;34 This is not completely surprising given that the relationship 333 
between amyloid burden and cognition is probably nonlinear and dependent on additional factors 334 
such as tau pathology and microvascular changes. Low sensitivity of the neuropsychological tests 335 
used may have been another factor. Sensitivity could be increased in the future by employing 336 
cognitive tasks that are known to be sleep-dependent. 337 

Current evidence suggests that cognitive decline in AD is associated with decreases in CSF 338 
Aβ42 and increases in amyloid PET uptake.35 However, little is known about the temporal course 339 
of CSF Aβ42 in the preclinical or early stages of the disease, with some recent animal and human 340 
studies showing Aβ42 elevations prior to Aβ42 reductions,36;37 suggesting an intermediate stage of 341 
increased soluble Aβ levels prior to amyloid deposition. Interestingly, we and others have shown 342 
that reduced slow wave activity (SWA) at cross-section as well as one night of SWS disruption, 343 
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are associated with increases in CSF Aβ levels, potentially as a consequence of increases in 344 
neuronal firing and/or decreases in amyloid clearance.38-41 It remains to be determined how 345 
universal a period of elevated CSF Aβ42 in humans is observed prior to a decline, but the above 346 
mentioned studies suggest that sleep disruption might be associated with elevations of CSF Aβ42 347 
which in chronic sleep disorders such as OSA could foster its aggregation and manifest as 348 
longitudinal decreases in CSF Aβ42 over time such as the one observed in our study. This 349 
hypothesis would also explain the absence of significant associations at cross-section. Whether 350 
OSA-related sleep fragmentation increases AD-risk through disruption of SWS or other sleep 351 
stages is unknown. The ends of apneas are associated with arousals or awakenings that prevent 352 
sleep42 and these are more commonly observed in NREM1-2 and REM sleep. Apneic episodes 353 
are less common in SWS, which has been associated with a higher respiratory arousal 354 
threshold43;44 as well as more stable breathing.45 However, the temporal course of SWA has been 355 
shown to be slower in mild OSA,46 while severe OSA patients show up to a 40% rebound in SWS 356 
duration during OSA treatment with CPAP,47 which suggest that changes in SWS quality may also 357 
be involved. However, a recent prospective study reported the association between decreased 358 
percentage of REM sleep and increased risk of dementia, implicating also REM sleep as a 359 
possible mediator for AD risk.48 In addition, actigraphy-assessed arousals and circadian rhythm 360 
disruption have also been shown to increase the risk of MCI/dementia in the elderly,49 indicating 361 
that the relationship between OSA-related sleep fragmentation and amyloid deposition might not 362 
be stage-specific.  363 

 364 
Another possible mechanism by which OSA might increase amyloid deposition is through 365 

impairment in the CSF-ISF exchange promoted by the glymphatic system40 resulting in decreased 366 
clearance of ISF Aβ42. This mechanism was suggested in a recent study of 31 controls and 10 367 
severe OSA middle-age subjects where neuronally derived proteins were decreased in the OSA 368 
group when compared to controls.40 The authors propose that elevations in the intrathoracic and 369 
intracranial pressure as well as a sudden pressure reversal at the end of the apnea would impede 370 
the glymphatic flow of metabolites from ISF into CSF.40 Another potential pathway of impairment 371 
of CSF-ISF exchange could be cerebral edema secondary to intermittent hypoxia, as proposed 372 
recently in a study in which severity of OSA correlated with increased volume and thickness of 373 
the left lateral prefrontal cortex as well as increased thickness of the right frontal pole, the right 374 
lateral parietal lobules, and the left posterior cingulate cortex.50 Similar findings were observed as 375 
brain volume reductions after six months of treatment with CPAP which also suggests the 376 
existence of brain edema in OSA.51  377 

 378 
Finally, the effects of OSA directly increasing ISF Aβ42 burden as suggested by some 379 

intermittent hypoxia animals models,52;53 or indirectly through other intermediate mechanisms 380 
such as oxidative stress, sympathetic activation, inflammation, hypercoagulability, endothelial 381 
dysfunction or metabolic dysregulation cannot be discarded although it is feasible that these and 382 
other consequences of OSA may decline with age10;54 and might not be as relevant in the elderly 383 
as in middle age. 384 

 385 
 Among participants with initial PiB+ scans at cross-section, Figure 3 suggest that a higher 386 

severity of OSA is associated with greater brain Aβ deposition, while no such association is found 387 
in participants with PiB- scans, implying that presence or absence of amyloid burden might act as 388 
a moderator in these relationships.  This would be in agreement with previous studies showing 389 
increased amyloid deposition associated with higher AHI indices in MCI patients but not in 390 
cognitively normal controls at cross-section.13 We did not observe this effect in the CSF sample 391 
when we compared amyloid positive vs. negative cases based on the NYU CBH CSF bank Aβ42 392 
cut-offs (i.e. CSF Aβ42 ng/ml <500), so this finding  should be interpreted with caution. It may be 393 
that the effects of OSA/hypoxia on Aβ aggregation are most pronounced after significant Aβ 394 
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accumulation has already occurred, leading to an acceleration of further Aβ deposition in a feed–395 
forward cycle13 (Figure 4) with OSA-related arousals worsening sleep quality and increasing 396 
amyloid deposition. In addition, 33/34 of the subjects that had PiB PET follow-up scans were PiB- 397 
at baseline, indicating that the observed longitudinal increases in PiB uptake were not dependent 398 
on amyloid status.  399 

 400 
Our observations are consistent with our hypothesis that there is an association between 401 

severity of OSA-related sleep fragmentation and longitudinal increase in amyloid burden in 402 
cognitively normal elderly. This implies that existing therapies for OSA such as CPAP could delay 403 
the progression to MCI or dementia in elderly with OSA, as was suggested by our previous 404 
epidemiological studies using the ADNI database11 and a recent cross-sectional study in which 405 
OSA patients showed lower CSF Aβ42 concentrations, as well as higher T-tau/Aβ42 ratio when 406 
compared to OSA-CPAP patients.15  407 

 The high prevalence of mild and moderate to severe OSA in cognitively normal elderly in 408 
asymptomatic adults undergoing screening for OSA as part of a protocol on memory and normal 409 
aging adds to the importance of these findings. Strengths of our study include that our community 410 
residing subjects were not recruited for the study based on sleep complaints, and thus should 411 
have been free of selection biases potentially affecting sleep-clinic based cohorts which typically 412 
include younger, more frequently male, obese and symptomatic (e.g. excessive daytime 413 
sleepiness, treatment resistant hypertension, etc.). We also utilized a state-of-the-art method for 414 
home-monitoring of OSA, as well as longitudinal standardized CSF and PET biomarkers. 415 
Potential weaknesses of the study were the relative short duration and the lack of longitudinal 416 
sleep data which did not allow us to test whether preclinical-AD brain lesions increase the risk for 417 
OSA, or the lack of a longer clinical assessment to test whether amyloid deposition is followed by 418 
cognitive decline to MCI or AD. Another limitation of the study was that not all subjects had a 419 
longitudinal follow up, although both completers and non-completers were not different in terms 420 
of sociodemographics, BMI, MMSE, AHIall or AHI4%. 421 

In summary, to our knowledge this study is the first to document that OSA is associated with 422 
longitudinal changes in amyloid burden in a sample of cognitively normal elderly. The implication 423 
of these findings is that we have identified a contribution of OSA in increasing the amyloid beta 424 
burden prior to significant cognitive decline. Our data support testing whether clinical interventions 425 
aimed at OSA, such as treatment with CPAP or dental appliances, could be implemented during 426 
the early phase in which tissue damage precedes clinical symptoms and neuronal dysfunction, to 427 
mitigate the progression of cognitive impairment. 428 
 429 

 430 

 431 

 432 

 433 
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Tables 461 

Table 1: Baseline demographic and sleep characteristics of the subjects  
Characteristics All Normal Mild OSA Moderate-Severe 

OSA 
No. of Participants (%) 208 (100) 97 (46.63) 76 (36.53) 35 (16.82) 
Female sex, number (%) 129 (62) 67 (69.1) 44 (57.9) 18 (51.4) 
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BMI (Kg/m2), median (IQR) 25.79 
(22.7,29.87) 

24.61   
(22.32,28.17)* 

26.89 
(23.32,29.9) 

29.76  
(23.49,33.51)* 

Age, years, mean ± SD    68.46 ± 
7.38 

67.56 ± 7.32 68.60 ± 7.19 70.68 ± 7.69 

Education, years, median (IQR) 17 (16, 18) 16.5 (16,18) 17 (16,18) 16 (14,19) 
Hypertension, number (%) 86 (41.3) 34 (35.1) 32 (42.1) 20 (57.1) 
Diabetes, number (%) 12 (5.8) 4 (4.1) 4 (5.3) 4 (11.4) 
Cardiovascular disease, number (%) 9 (4.3) 1 (1) 7 (9.2) 1 (2.9) 
Thyroid disease, number (%) 34 (16.3) 16 (16.5) 11 (14.5) 7 (20) 
APOE4 positive, number (%)  71 (34.1) 34 (35.1) 25 (32.9) 12 (34.3) 
AHI4% ,median (IQR) 5                 

(1.55, 11.40) 
1.45      
(0.725,3.00)* 

7.75 
(5.81,10.52)* 

25.00     
(19.3,37.00)* 

AHIall, median (IQR) 17            
(10.85, 24.00) 

10.40     
(6.75,13.65)* 

20.05 (17.05, 
24.00)* 

39.00             
(31,57)* 

Mean O2 Saturation, median (IQR) 94.19        
(93.15, 95.6) 

94.57      
(93.78,95.6)* 

94.9 
(92.77,95.71)a 

93.47        
(92.1,94.5)* a 

ESS, median (IQR) 5 (3,8) 4 (3,7) 6 (3.5,8.5) 6 (4,9) 
TST,hours, median (IQR) 7 (6.5, 8) 7.48 (6.75,8) 7.00 (6.5,8) 7.50 (6.5,8) 

 

*,a Statistical significant difference between the groups. 

                                                                                                                                                                                                                       
Table 2: Cognitive characteristics of NYU cohort at baseline and follow-up evaluations 

 All (n=108) Normal (n=50) Mild OSA(n=43) Moderate-Severe 
OSA (n=15) 

MMSE baseline(mean±SD) 29.31 ±0.99 29.40±0.93 29.18±0.98 29.33±1.30 

MMSE follow-up 29.36±0.85 29.51±0.718 29.29±0.867 29.00±1.206 
CDR baseline 0±0 0±0 0±0 0±0 
CDR follow-up 0.010±0.071 0±0 0±0 0.083±0.19 
Animal fluency  (z-scores)  0.207±0.99 0.24±1.14 0.05±0.81 0.50±0.95 
Animal fluency  (delta change z-
scores) 

-0.23±0.87 -0.30±0.98 -0.20±0.85 -0.11±0.54 

Vegetable Fluency (z-scores) -0.042±1.1 -0.023±0.98 -0.14±1.28 0.15±0.96 
Vegetable Fluency (delta change z-
scores) 

-0.14±0.99 -0.39±0.87 0.087±1.08 -0.02±0.98 

Boston Naming Test (z-scores) -0.20±1.03 -0.10±1.06 -0.38±0.98 -0.017±1.07 
Boston Naming Test (delta change z-
scores) 

0.11±0.71 0.24±0.69 0.12±0.71 -0.28±0.69 

Logic 1 (z-scores) 0.19±0.96 0.11±1.0 0.24±0.90 0.29±1.05 
Logic 1 (delta change z-scores) -0.007±0.86    -0.03±0.87 -0.07±0.82 0.23±0.96 
Logic 2 (z-scores) 0.10±1.0 0.11±1.07        0.008±0.97 0.33±0.88 
Logic 2 (delta change z-scores) -0.012±0.75 0.042±0.8 -0.06±0.75 -0.04±0.67 
Trails Making Test-A time (z-scores) 0.062±1.06 -0.14±0.88 -0.33±1.04 0.12±0.89 
Trails Making Test-A time (delta 
change z-scores) 

0.048±0.88 0.025±0.14 0.127±0.7 -.093±1.03 

Trails Making Test-B time (z-scores) -0.17±0.96 -0.14±0.89 -0.33±1.04 0.12±0.9 
Trails Making Test-B time (delta 
change z-scores) 

-0.034±0.72 -0.007±0.65 -0.002±0.63 -0.19±0.64 

DSST (z-scores) 0.2±0.95 0.2±0.83 0.14±1.03 0.36±1.11 
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DSST(delta change z-scores) 0.07±0.44 0.1±0.44 -.003±.45 0.18±0.37 
*Statistical significant difference between the groups. Lower scores represent worse cognitive function. 462 

Table 3: AD Biomarker characteristics  
 ALL 

(n=208) 
Normal (n=97) Mild OSA (n=76) Moderate-Severe 

OSA (n=35) 
CSF Aβ42 baseline        (n=179) 
Mean ± SD 

681.31 ±236.43 681.88 ± 
243.18 

690.61 ± 
233.99 

657.48 ± 224.79 

CSF Aβ42 annual change (n=104)                                  
Median (Interquartile range) 

29.40                         
(-9.53,71.06) 

40.59 
(4.23,80.80) 

26.97                         
(-29.99,66.71) 

-4.088                              
(-18.97,27.92) 

CSF P-tau baseline (n=179) 
Median (Interquartile range) 

41                          
(31,52) 

42.50 
(31.5,52.05) 

43.55                 
(30,55) 

40.97                 
(31.71,49) 

CSF P-tau annual change (n=104) 
Mean ± SD 

1.42 ± 3.93 1.35 ± 3.18 0.73 ± 4.27 3.43 ± 4.90 

CSF T-tau baseline (n=179) 
Median (Interquartile range) 

257.96 
(202,360.91) 

268.04 
(217.65,362) 

244.85 
(198,382) 

248.14       
(174,343) 

CSF T-tau annual change (n=104) 
Mean ± SD 

8.24 ± 21.42 7.52 ± 
18.86 

5.85 ± 21.83 17.04 ± 27.53 

ADPiB PET baseline (n=86)                                      
Median (Interquartile range) 

1.05       
(1.02,1.11) 

1.047 
(1.02,1.09) 

1.061 
(1.00,1.11) 

1.06          
(1.01,1.14) 

ADPiB PET annual change (n=34)                                      
Median (Interquartile range) 

0.0005                            
(-0.009,0.014) 

-0.0020                  
(-

0.0095,0.0078) 

-0.0022                         
(-0.0126,0.0224) 

0.014  
(0.006,0.028) 

*Statistical significant difference between the groups. 463 

Dependent 
variable 

 R2 ΔR2 Independent 
variables Β 95% CI p 

Annual  
ΔCSF 
Aβ42 

Model 1 -.008               .035 

Age -1.36 -3.67, .95 .24 

Sex 6.63 -27.72, 
40.99 .70 

BMI .88 -2.36, 4.12 .59 
ApoE4 -15.54 -50.69, 8.81 .36 

Model 1 
+AHI4 .028 .046 AHI4 -13.35 -26.06, -.64 .04 

       

Model 1 -.008               .035 

Age -1.57 -3.86, .70 .17 

Sex 4.07 -30.36, 
38.51 .81 

BMI 1.0 -2.27, 4.27 .54 

ApoE4 -17.89 -52.58, 
16.79 .30 

Model 1 
+AHIall .027 .044 AHIall -29.08 -57.08, -1.08 .04 

 464 

Dependent 
variable 

 R2 ΔR2 Independent 
variables Β 95% CI p 

Annual  
Ln ΔPiB Model 1 -.068             .062 Age .001 -.001, .004 .28 

Sex .001 -.036, .038 .96 
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BMI -.001 -.004, .002 .37 
ApoE4 .01 -.026, .046 .36 

Model 1 
+AHI4 .134 .072 AHI4 .013 -.004, .03 .13 

       

Model 1 
   -.068               .062 

Age .001 -.001, .004 .25 
Sex .001 -.036, .038 .96 
BMI -.001 -.004, .002 .37 

ApoE4 .01 -.026, .046 .56 
Model 1 
+AHIall .151 .09 AHIall .026 -005, .057 .09 

Table 4: Final model showing relationship of annual ΔCSF Aβ42 and annual ln ΔPiB with AHIall and AHI4%.  465 

 466 

 467 

 468 

 469 

Figures 470 

Figure 1 471 

 472 
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Study flow chart showing a detailed breakdown of subjects based on AD 
biomarker evaluations at the baseline and follow up visits. 
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