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At a Glance Commentary 1 

Scientific Knowledge on the Subject  2 

Recent studies have revealed that the lung microbiota of critically ill patients are profoundly 3 

altered and are correlated with alveolar and systemic inflammation. Altered lung microbiota may 4 

propel and perpetuate alveolar inflammation and injury among critically ill patients. Yet to date, 5 

no study has determined whether altered lung microbiota predict disease outcomes in this 6 

population. 7 

 8 

What This Study Adds to the Field 9 

We here show that among mechanically ventilated critically ill patients, variation in lung 10 

microbiota at admission predicts ICU outcomes. Two key features of the lung microbiome, 11 

bacterial burden and community composition, predict ventilator-free days. Specifically, 12 

increased lung bacterial DNA burden and enrichment of the lung microbiome with gut-13 

associated bacterial taxa (e.g. Lachnospiraceae and Enterobacteriaceae families) were 14 

predictive both of poor ICU outcomes and the clinical diagnosis of ARDS. This correlation 15 

between gut-associated bacteria and ARDS validates prior findings, and supports the 16 

hypothesis that translocation of gut bacteria to the lungs contributes to the pathogenesis of lung 17 

injury. Our results confirm the clinical significance of lung microbiota in critically ill patients. The 18 

lung microbiome is an important and underappreciated source of clinical heterogeneity among 19 

the critically ill, and represents a novel therapeutic target for the prevention and treatment of 20 

lung injury. 21 
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Abstract 22 

Rationale: Recent studies have revealed that in critically ill patients, lung microbiota are altered 23 

and correlate with alveolar inflammation. The clinical significance of altered lung bacteria in 24 

critical illness is unknown. 25 

Objectives: To determine if clinical outcomes of critically ill patients are predicted by features of 26 

the lung microbiome at the time of admission. 27 

Methods: We performed a prospective observational cohort study in an intensive care unit 28 

(ICU) at a university hospital. Lung microbiota were quantified and characterized using droplet 29 

digital PCR and bacterial 16S rRNA gene sequencing. Primary predictors were the bacterial 30 

burden, community diversity, and community composition of lung microbiota. The primary 31 

outcome was ventilator-free days, determined at 28 days post admission. 32 

Measurements and Main Results: Lungs of 91 critically ill patients were sampled using 33 

miniature-bronchoalveolar lavage within 24 hours of ICU admission. Patients with increased 34 

bacterial lung bacterial burden had fewer ventilator-free days (HR 0.43, CI 0.21-0.88), which 35 

remained significant when controlled for pneumonia and severity of illness. The community 36 

composition of lung bacteria predicted ventilator-free days (P=0.003), driven by the presence of 37 

gut-associated bacteria (e.g. Lachnospiraceae and Enterobacteriaceae spp.). Detection of gut-38 

associated bacteria was also associated with the presence of the acute respiratory distress 39 

syndrome. 40 

Conclusions: Key features of the lung microbiome (bacterial burden, enrichment with gut-41 

associated bacteria) predict outcomes in critically ill patients. The lung microbiome is an 42 

understudied source of clinical variation in critical illness, and represents a novel therapeutic 43 

target for the prevention and treatment of acute respiratory failure.44 
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Body 45 

Introduction 46 

In the past decade, advances in culture-independent microbiology have revealed that the lungs, 47 

previously considered sterile, harbor complex and dynamic communities of bacteria(1). Lung 48 

microbiota are detectable in health(2-4), altered in disease(5, 6), and correlate with variation in 49 

airway and alveolar immunity(2, 4, 7). In numerous chronic respiratory diseases, key features of 50 

the lung microbiome are predictive of disease outcomes. The burden of lung bacteria 51 

(measured by quantification of bacterial DNA) predicts mortality and disease progression in 52 

stable patients with idiopathic pulmonary fibrosis(8, 9) and responsiveness to inhaled antibiotics 53 

in patients with bronchiectasis(10). The diversity of sputum microbiota predicts mortality in 54 

patients with chronic obstructive pulmonary disease(11), and the community composition of 55 

respiratory microbiota predicts exacerbations in bronchiectasis(12) and respiratory infections in 56 

infants(13).  57 

 58 

The lung microbiota of critically ill patients are profoundly altered compared to those of healthy 59 

subjects(7, 14-16), and correlate with alveolar and systemic inflammation(7, 15). Specifically, 60 

among patients with the acute respiratory distress syndrome (ARDS), the lung microbiome is 61 

enriched with gut-associated bacteria(7), and early enrichment of the lung microbiome with gut-62 

associated bacteria (e.g. Enterobacteriaceae spp.) is associated with subsequent development 63 

of ARDS(15). Altered lung microbiota may propel and perpetuate alveolar inflammation and 64 

injury among critically ill patients, but to date no study has determined whether altered lung 65 

microbiota predict disease outcomes in this population. 66 

 67 

To determine if lung microbiota at ICU admission predict clinical outcomes in critically ill 68 

patients, we performed a prospective observational cohort study on critically ill patients 69 

receiving mechanical ventilation. The primary outcome was ventilator-free days, adjudicated at 70 
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28 days following enrollment. We hypothesized that key features of the lung microbiome 71 

(bacterial burden, diversity, and community composition) would predict ICU outcomes, even 72 

when controlled for the presence of clinically-appreciated pneumonia. 73 

 74 

Methods 75 

Study design 76 

This study was a secondary analysis of specimens collected from patients in the BASIC study 77 

(Biomarker Analysis in Septic ICu patients). This study was incorporated in the Molecular 78 

Diagnosis and Risk Stratification of Sepsis (MARS) project (NCT01905033) (17-20). The 79 

present study was conducted in the ICU of the Academic Medical Center and was approved by 80 

the institutional Medical Ethics committee; written informed consent was obtained from the 81 

patient representative prior to collection of airway samples via miniature bronchoalveolar lavage 82 

(IRB no. NL34294.018.10). Analysis was restricted to baseline specimens and data collected 83 

within 24 hours of admission. 84 

 85 

Study population 86 

All patients older than 18 years admitted to the ICU with an expected length of stay longer than 87 

24 hours were included in the MARS project. The BASIC study comprised a subset of patients 88 

included in the MARS study at the Amsterdam ICU with at least two “systemic inflammatory 89 

response syndrome” criteria, who received no antibiotics in the days preceding ICU admission. 90 

The current analysis is limited to consecutive patients who were included between September 91 

12, 2011, and November 7, 2013, receiving invasive mechanical ventilation and with informed 92 

consent for distal airway sampling. Adjudication of infection was assessed retrospectively using 93 

a four-point scale (ascending from none, possible, probable, to definite) using the Centers for 94 

Disease Control and Prevention and International Sepsis Forum consensus definitions as 95 

previously described(18). ARDS was scored on a daily basis by a team of well-trained clinical 96 
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researchers according to the American-European consensus criteria. After the publication of the 97 

Berlin definition, all cases were re-evaluated scored according to the new definition, as 98 

described previously(21). For the purposes of ARDS vs non-ARDS comparisons, we used 99 

adjudication at 24 hours following ICU admission. Severity of illness was quantified using the 100 

validated APACHE IV (Acute Physiology and Chronic Health Evaluation IV) (22) and SOFA 101 

(Sequential Organ Failure Assessment)(23) models.  102 

 103 

Specimen collection and processing 104 

Miniature bronchoalveolar lavage specimens were collected using standard clinical protocol. In 105 

short, a 50 cm, 14 Fr tracheal suction catheter was introduced through the orotracheal tube and 106 

inserted until significant resistance was encountered. The catheter was then pulled back 1cm 107 

and 20 mL 0.9% saline was injected in 10 seconds and immediately aspirated, after which the 108 

catheter was removed. Specimens were stored on ice from the time of specimen collection until 109 

processing. DNA was extracted, amplified, and sequenced according to previously published 110 

protocols(24-26). Sequencing was performed using the Illumina MiSeq platform (San Diego, 111 

CA). Bacterial DNA was quantified using a QX200 Droplet Digital PCR System (BioRad, 112 

Hercules, CA). Additional details are provided in the online data supplement. 113 

 114 

Statistical analysis 115 

As detailed in the online data supplement, we performed microbial ecology analysis using the 116 

vegan package 2.4-1 and mvabund in R(27-29) following sequence processing with mothur(30, 117 

31). We pre-specified that key features of the microbiome (predictors) would be: 1) bacterial 118 

DNA burden (as quantified using droplet digital PCR), 2) bacterial community diversity (as 119 

calculated using the Shannon Diversity Index), and 3) community composition. We determined 120 

significance in community composition (e.g. mini-BAL specimens vs negative sequencing 121 

controls, ARDS vs non-ARDS mini-BAL specimens) using mvabund (model-based approach to 122 
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analysis of multivariate abundance data). To identify community members driving differences in 123 

community composition, we used 1) biplot analysis, 2) rank abundance analysis, and 3) a 124 

random forest ensemble learning approach (randomForest package in R, version 4.6-14(32)). 125 

For random forest, we determined variable importance using 100 forests. The importance 126 

parameter was set to TRUE to enable retrieval of importance metrics: mean decrease in 127 

accuracy for classification (ARDS vs. non-ARDS) or IncMSE for regression (ventilator-free 128 

days). Default settings were utilized for all other parameters. Following model creation, the 129 

unscaled feature importance metric was extracted from each forest, assembled into a 130 

dataframe, ordered by highest feature importance, and displayed in boxplots of the most 131 

important features across the 100 forests. Our primary index of feature importance was Mean 132 

Decrease in Accuracy, which ranks predictors by the relative loss in accuracy the occurs when 133 

they are removed from the predictive model. We compared means via Student’s T test (when 134 

normally distributed), the Mann-Whitney U test (when non-Gaussian), and ANOVA with Holm-135 

Sidak’s multiple comparisons test as appropriate. Time-to-event analysis was performed using 136 

univariate and multivariate Cox proportional hazard models using ventilator-free days 137 

(adjudicated 28 days following enrollment) as a primary outcome; multivariate analysis adjusted 138 

for age, sex, severity of illness (APACHE IV), diagnosis of ARDS, and the presence of clinically-139 

suspected pneumonia as determined both by the primary clinical service and via post-hoc CDC 140 

adjudication criteria. The primary outcome was the proportional hazard ratio for being alive and 141 

liberated from mechanical ventilation, as adjudicated 28 days following admission. 142 

 143 

Role of the funding source 144 

The funding agencies had no role in the design, conduct, and analysis of the study or in the 145 

decision to submit the manuscript for publication. 146 
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Results 147 

Study cohort 148 

We obtained mini-BAL specimens from 91 critically ill patients within 24 hours of their ICU 149 

admission. The consort diagram is shown in the Appendix Figure E1. Patient demographics and 150 

clinical characteristics are reported in Table 1.  151 

 152 

Table 1. Demographics and Clinical Characteristics of 
Study Cohort 

Characteristic Study cohort 
(n = 91) 

Mean age (SD), y 60.7 (15.4) 
Male 55 (60) 
Admission type 

  

Medical 67 (74) 
Surgical (emergency) 20 (22) 
Surgical (elective) 4 (4) 
Severity of illness 

  

Mean SOFA (SD) 7.2 (4.1) 
Mean APACHE IV (SD) 82.6 (28.5) 
Lung injury 

  

ARDS at admission 17 (19) 
Mean PaO2:FiO2 (SD) 262.0 (104.7) 
Comorbidities 

  

Diabetes mellitus 13 (14) 
Malignancy 11 (12) 
COPD 5 (5) 
Immune deficiency 4 (4) 
ICU outcomes 

  

Mean ventilator-free days (SD) 18.5 (10.5) 
Mean ICU length of stay, days (SD) 5.6 (4.6) 
30-day mortality 27 (30) 
SOFA = Sequential Organ Failure Score. APACHE IV = Acute 
Physiology and Chronic Health Score IV. ARDS = Acute 
Respiratory Distress Syndrome. COPD = Chronic Obstructive 
Pulmonary Syndrome. Values are numbers (percentages) unless 
otherwise indicated. 

 

 

The distribution of admission diagnoses is reported in Appendix Table E1. Bacterial 153 

quantification and 16S rRNA gene sequencing was performed on all specimens. Details 154 
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regarding adequacy of sequencing and exclusion of specimens are provided in the online 155 

supplement. 156 

 157 

The microbiota of lung specimens from critically ill patients are distinct from those of background 158 

sequencing controls 159 

Low-biomass microbiome studies are vulnerable to contamination due to bacterial DNA present 160 

in reagents used in DNA extraction and library preparation(33). Our study used low-volume 161 

specimens (mini-BAL) from a low-microbial-biomass body site (the lower respiratory tract), and 162 

had their bacterial burden further decreased via a centrifugation step to remove eukaryotic 163 

cells(34). Given these concerns, we first asked whether a bacterial signal could be detected in 164 

these mini-BAL specimens that was distinct from that of negative controls. We accomplished 165 

this by comparing the bacterial DNA in mini-BAL specimens with no-template controls (N = 25), 166 

AE buffer specimens (N = 8), sterile water used in DNA extraction (N = 4), extraction control 167 

specimens (N = 9), and blank sequencing wells (N = 6). 168 

 169 

As shown in Supplemental Figure 2, we found clear evidence of distinct bacterial signal in 170 

mini-BAL specimens despite their low microbial biomass. Using ultrasensitive quantification of 171 

the bacterial 16S gene (via droplet digital PCR), we found significantly more bacterial DNA in 172 

mini-BAL specimens than in no-template control specimens (P < 0.001, Supplemental Figure 173 

2A). The median bacterial DNA burden was 21,246 bacterial gene copies per mL (mean 174 

118,411 copies ± 707,438). We found a wide range of bacterial burden (6,329 - 6,713,947 175 

copies/mL), ranging from comparable to no-template controls to 1000-fold greater than 176 

background. Using bacterial community analysis (16S rRNA gene amplicon sequencing), we 177 

confirmed that the identity of bacteria detected in mini-BAL specimens was distinct from that of 178 

negative control specimens (P < 0.0001, mvabund). Principal component analysis revealed 179 

distinct clustering of mini-BAL specimens apart from negative control specimens 180 
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(Supplemental Figure 2B), though overlap did occur between some mini-BAL specimens and 181 

negative controls. Rank abundance analysis showed clear differences in relative abundance of 182 

taxa in negative controls and mini-BAL specimens (Supplemental Figure 2C). The dominant 183 

taxonomic group in negative controls specimens (OTU008:Pelomonas) comprised 25.5% of 184 

bacterial sequences in negative controls, but only 2.6% of sequences in mini-BAL specimens. 185 

 186 

We thus concluded that while highly variable in their bacterial DNA burden and susceptibility to 187 

contamination, mini-BAL specimens contained a distinct bacterial signal from negative control 188 

specimens. 189 

 190 

Lung microbiota of critically ill patients are altered in patients with ARDS and enriched with gut-191 

associated bacteria (Enterobacteriaceae spp.) 192 

We next compared the lung microbiota of critically ill patients with and without ARDS. Prior 193 

studies have demonstrated that the lung microbiota of patients with ARDS are altered and 194 

enriched with gut-associated bacteria. We compared lung bacterial communities in patients with 195 

and without physician-adjudicated ARDS. As shown in Figure 1, lung bacterial communities of 196 

patients with ARDS differed in the bacterial DNA burden and community composition compared 197 

to patients without ARDS.  198 

 199 

We first compared ARDS and non-ARDS specimens in their bacterial DNA burden and 200 

community diversity. Though highly variable, the bacterial DNA burden in mini-BAL specimens 201 

was greater in patients with ARDS than without ARDS (P = 0.014, Figure 1A). ARDS 202 

specimens did not differ in bacterial community diversity, either measured via the Shannon 203 

Diversity Index (P = 0.13) or community richness (P = 0.83) (Figure 1B). With both comparisons 204 

(bacterial DNA burden and diversity), within-group variation far exceeded across-group 205 

differences.206 
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We next compared the community composition of bacterial communities in ARDS and non-207 

ARDS specimens using complementary approaches. We first visualized communities using 208 

principal component analysis (Figure 1C). While considerable taxonomic overlap was found 209 

across ARDS and non-ARDS specimens, there was a detectable separation of specimens 210 

according to ARDS status. This collective difference in community composition was confirmed 211 

statistically via mvabund, and was robust to taxonomic level of comparison (P = 0.014 at the 212 

OTU level of taxonomy, P = 0.013 at the family level, P = 0.003 at the phylum level). We next 213 

used biplot analysis to identify specific taxa responsible for this collective difference in 214 

community composition (Figure 1D). Whereas clusters of non-ARDS specimens were defined 215 

by bacterial taxa commonly detected in healthy lungs (Streptococcaceae spp., Veillonellaceae 216 

spp., and Prevotellaceae spp.) and taxa detected in negative sequencing control specimens 217 

(Verrucomicrobiaceae spp., Flavobacteriaceae spp.), ARDS specimens were more commonly 218 

characterized by Pasteurellaceae spp. and Enterobacteriacaeae spp.. 219 

 220 

We then used complementary techniques to identify ARDS-associated bacterial taxa. Using 221 

rank abundance visualization (Figure 1E), we compared the relative abundance of prominent 222 

taxa across ARDS and non-ARDS specimens. While many taxa were common to both group, 223 

the Enterobacteriaceae family was far more abundant ARDS specimens compared to non-224 

ARDS specimens (12.5% of all bacterial sequences in ARDS specimens compared to 0.18% of 225 

all bacterial specimens in non-ARDS specimens). We used unbiased regression-based 226 

(mvabund) and ensemble-learning (random forest) approaches to identify ARDS-enriched taxa. 227 

Mvabund, which rigorously controls for multiple comparisons, identified the Enterobacteriaceae 228 

family as enriched in ARDS specimens (P = 0.002). Random forest clearly identified the 229 

Enterobacteriaceae family as the most important taxonomic feature discriminating ARDS from 230 

non-ARDS specimens (Figure 1F).  231 

 232 
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We next compared our ARDS-associated Enterobacteriaceae taxonomic group with that of an 233 

ARDS-associated Enterobacteriaceae taxon in a recently published study of mechanically 234 

ventilated trauma patients(15). We compared the most prominent Enterobacteriaceae-classified 235 

OTU in our data set (OTU0005, comprising 61.5% of all Enterobacteriaceae-classified 236 

sequences) with the ARDS-associated Enterobacteriaceae identified by Panzer et al. 237 

(OTU2119418). As shown in Supplemental Figure 3A, the representative sequence of our 238 

study’s ARDS-associated Enterobacteriaceae OTU was 96% aligned with that of the ARDS-239 

associated Enterobacteriaceae OTU identified by Panzer et al., differing in only 3 base pairs. 240 

We compared these ARDS-associated OTUs with the taxonomic classifications of closely-241 

aligned sequences from the SILVA ribosomal RNA database. As shown in in Supplemental 242 

Figure 3B, both OTUs were exclusively identical to Enterobacteriaceae-classified taxa, 243 

including Escherichia coli, Enterobacter spp., and Klebsiella pneumoniae. 244 

 245 

We thus concluded that the lung microbiota of patients with ARDS differ from those of critically 246 

ill patients without ARDS, driven by relative enrichment with gut-associated Enterobacteriaceae 247 

spp.. 248 

 249 

Lung microbiota are predictive of clinical outcomes in critically ill patients 250 

We next asked if key features of the lung microbiome (bacterial burden, diversity, and 251 

community composition) predict clinical outcomes in critically ill patients. Our primary outcome 252 

was ventilator-free days measured at 28 days following admission.  253 

 254 

We first asked if bacterial burden of mini-BAL specimens (quantified using ddPCR of the 16S 255 

rRNA gene) predicted ICU outcomes (Table 2). Using univariate analysis, we found that 256 

increased baseline lung bacterial DNA burden predicted fewer ventilator-free days, either when  257 
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analyzed continuously (hazard ratio 0.43, confidence interval 0.21 - 0.88, P = 0.022) or when 258 

comparing tertiles defined by total lung bacterial DNA burden. In other words, for each 259 

additional 10-fold increase in lung bacterial DNA, the Hazard Ratio for favorable outcome 260 

(liberation from mechanical ventilation) was 0.43. As shown in Figure 2, the tertile of patients 261 

with the highest baseline lung bacterial DNA burden were less likely to be extubated and alive at 262 

7, 14, 21, and 28 days compared to patients with low bacterial DNA burden (HR 0.45, 263 

confidence interval 0.25 - 0.81, P = 0.008). 264 

265 

Table 2. Predictors of Ventilator-Free Days in Mechanically Ventilated Critically Ill Patients 

Predictor 
Univariate  Multivariate 

Hazard ratio (CI) P value  Hazard ratio (CI) P value 
        
Lung bacterial DNA burden (continuous) 0.43 (0.21 - 0.88) 0.022  0.40 (0.18 - 0.86) 0.019 
Lung bacterial DNA burden: middle tertile* 0.87 (0.50 - 1.51) 0.62     
Lung bacterial DNA burden: highest tertile* 0.45 (0.25 - 0.81) 0.008     
Shannon diversity index† 1.27 (0.87 - 1.86) 0.21     
Age (years) 0.99 (0.98 - 1.01) 0.35  1.01 (0.99 - 1.03) 0.32 
Gender (male) 1.26 (0.78 - 2.03) 0.35  0.90 (0.54 - 1.49) 0.68 
SOFA 0.95 (0.90 - 1.01) 0.10     
APACHE IV 0.98 (0.98 - 0.99) <0.001  0.98 (0.97 - 0.99) <0.001 
Suspected pneumonia 1.01 (0.60 - 1.70) 0.96  0.90 (0.53 - 1.55) 0.71 

Pneumonia (post-hoc, CDC criteria) 0.48 (0.18 - 1.33) 0.16     
ARDS 0.51 (0.27 - 0.98) 0.044  0.61 (0.31 - 1.21) 0.16 

CI = Confidence interval (95%). SOFA = Sequential Organ Failure Score. APACHE IV = Acute Physiology and Chronic Health 
Score IV. ARDS = Acute Respiratory Distress Syndrome.  
*Versus lowest tertile. 
†Shannon diversity index, per 1-unit increase 
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Pneumonia is common among mechanically ventilated patients, and a potential source of 266 

confounding in lung microbiome studies. In our study cohort, 27 patients (30%) had suspected 267 

pneumonia either at admission or within 48 hours; of these, 7 patients met CDC criteria for 268 

probable or confirmed pneumonia via post-hoc chart review. When we controlled our outcome 269 

analysis of lung bacterial DNA burden for the presence of clinically suspected pneumonia, it did 270 

not meaningfully change either the hazard ratio or significance of the model (HR = 0.43, P = 271 

0.021). Similarly, controlling for post-hoc adjudicated pneumonia (using CDC criteria) also did 272 

not influence the predictive power of lung bacterial DNA burden (HR = 0.43, P = 0.019). We 273 

thus concluded that lung bacterial burden predicts poor outcomes in mechanically ventilated 274 

critically ill patients, even when controlled for the presence of suspected or confirmed 275 

pneumonia. 276 

 277 

We then performed multivariate analysis to determine whether lung bacterial DNA burden is 278 

independently predictive of poor outcomes. The relationship between increased lung bacterial 279 

DNA burden and fewer ventilator-free days remained significant when controlled for age, 280 
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gender, severity of illness (APACHE IV score), the presence of suspected pneumonia, and the 281 

presence of ARDS (HR 0.40, confidence interval 0.18 - 0.86, P = 0.019). We thus concluded 282 

that lung bacterial DNA burden is an independent predictor of poor outcomes in critically ill 283 

patients. 284 

 285 

We next asked if bacterial diversity of lung bacteria predicts ICU outcomes (Figure 3A). 286 

Bacterial diversity of lung bacteria (as measured by the Shannon Diversity Index) did not 287 

significantly predict ICU outcomes (P = 0.22). While the most favorable ICU outcomes were 288 

observed among patients with high baseline lung bacterial diversity, followed in stepwise 289 

manner by patients with intermediate and low diversity, this difference in tertiles was not 290 

statistically significant. Other indices of lung bacterial diversity (community richness, community 291 

dominance) were also not significantly predictive of ICU outcomes (ventilator-free days, P > 292 

0.05 for all comparisons, Appendix Table E2). 293 

 294 

Finally, we asked if the community composition of lung bacteria is predictive of ICU outcomes. 295 

We compared patient ventilator-free days with lung bacterial community structure using 296 

mvabund (model-based approach to analysis of multivariate abundance data). The overall 297 

community composition of baseline lung microbiota was significantly predictive of patient 298 

ventilator-free days (P = 0.003 at the OTU level of taxonomy, P = 0.004 at the family level). 299 

Using random forest to identify taxa associated with poor outcomes, we identified the gut-300 

associated Lachnospiraceae and Enterobacteriaceae families as the taxa most strongly 301 

predictive of fewer ventilator-free days (Figure 3B). We then tested the hypotheses that 302 

detection of these taxa predicts poor outcomes. As shown in Figure 3B, detection of the 303 

Lachnospiracaeae family was significantly predictive of worse ICU outcomes (P = 0.020). The 304 

relationship between Enterobacteriaceae detection and ventilator-free days was not significant 305 

(P = 0.12). 306 
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We thus concluded that in the lung microbiota of critically ill patients, poor ICU outcomes are 307 

predicted both by increased bacterial burden and by community composition (specifically, 308 

enrichment with gut-associated taxa). 309 

 310 

Discussion 311 

The core finding of this study is that among mechanically ventilated critically ill patients, 312 

variation in lung microbiota at admission predicts ICU outcomes. Two key features of the lung 313 

microbiome, bacterial burden and community composition, predicted ventilator-free days. 314 

Specifically, increased lung bacterial DNA burden and enrichment of the lung microbiome with 315 
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gut-associated bacterial taxa (e.g. Lachnospiraceae and Enterobacteriaceae families) were 316 

predictive of poor ICU outcomes and the clinical diagnosis of ARDS. 317 

 318 

Our study is the first to demonstrate that variation in lung microbiota is predictive of clinical 319 

outcomes in critically ill patients. This key finding is compatible with broader (non-ICU) lung 320 

microbiome studies, which have found that lung microbiota are predictive of disease outcomes 321 

in idiopathic pulmonary fibrosis(8, 9), chronic obstructive pulmonary disease(11), 322 

bronchiectasis(10, 12), and infants susceptible to respiratory infections(13). While these 323 

findings, robust across disease states, confirm that the lung microbiome is a risk factor for 324 

disease progression, a crucial and unanswered question is whether lung microbiota are a 325 

modifiable risk factor. Animal studies using germ-free and antibiotic-exposed mice suggest that 326 

manipulation of the microbiome does influence host susceptibility to lung inflammation, injury, 327 

and mortality(9, 35). Yet the precise role of gut and lung microbiota in the pathogenesis of acute 328 

and chronic lung injury has yet to be elucidated. Future studies should interrogate whether the 329 

microbiome’s role in lung disease is more attributable to remote (gut-lung) or local (lung-lung) 330 

host-microbiome interactions(2). 331 

 332 

Our findings both validate several recent studies and provide new insight into the importance of 333 

the lung microbiome in critical illness. We have previously reported that the lung microbiome is 334 

enriched with gut-associated bacteria in ARDS and correlated with the severity of systemic and 335 

alveolar inflammation(7). In a subsequent study of mechanically ventilated trauma patients, the 336 

presence of gut-associated bacteria in endotracheal aspirates (Enterobacteriaceae spp.) was 337 

associated with ARDS onset(15). In our current study, we found that the lung microbiota of 338 

patients with ARDS was distinct from patients without ARDS, again driven by the presence of 339 

gut-associated bacteria (Enterobacteriaceae spp.). Indeed, the bacterial taxon most strongly 340 

correlated with ARDS status in our study (OTU0005:Enterobacteriaceae) was nearly identical to 341 
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that of the ARDS-associated bacterial taxon found by Panzer and colleagues(15). These 342 

multiple findings, now robust across cohorts, sequencing platforms, laboratories, and 343 

continents, all provide indirect support for the hypothesis that gut-lung translocation of bacteria 344 

contributes to the pathogenesis of lung injury in critically ill patients. 345 

 346 

Importantly, our core findings remained significant when controlled for the clinical suspicion or 347 

post-hoc adjudication of pneumonia. While this may seem paradoxical (increased lung bacterial 348 

burden predicts poor outcomes, and pneumonia is a condition of high lung bacterial burden), 349 

recent culture-independent studies have revealed both the complexity of lung bacterial 350 

communities in mechanically ventilated patients(14, 16, 36) and the inadequacy of our 351 

conventional understanding of pneumonia(37). The lack of concordance between our molecular 352 

characterization of lung bacteria and clinical assessment of pneumonia likely reflects several 353 

key issues in the microbiology of injured lungs: 1) clinical adjudication of pneumonia, especially 354 

in mechanically ventilated patients, is imprecise and unreliable(38), 2) a dichotomous 355 

adjudication of pneumonia is too simplistic and reductionistic to meaningfully describe the 356 

complex ecologic spectrum of respiratory microbiota, and 3) the lung microbiome may play a 357 

role in the pathogenesis of disease processes not classically considered infectious (e.g. 358 

perpetuating inflammation and injury in ARDS). Our results highlight the need for improved 359 

molecular diagnostics to provide clinicians with a more accurate and comprehensive 360 

assessment of lung microbiota, as well as a more refined ecologic understanding of respiratory 361 

infections in critically ill patients. 362 

 363 

Our study has several limitations that should prompt further validation and study. While we 364 

detected a distinct bacterial signal in our specimens, the bacterial biomass in these cell-free 365 

mini-BAL specimens was low, and in many specimens overlapped with background “sequencing 366 

noise.” Future studies, using larger volumes of whole BAL, may find stronger bacterial signal. 367 
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Our mini-BAL sampling approach was non-directional; thus the anatomic site of sampling was 368 

not standardized across patients. While our findings remained significant when controlled for 369 

important clinical confounders, we could not control for all potential exposures (e.g. ICU 370 

antibiotic exposure or pre-ICU medications), and residual confounding is likely. Finally, while our 371 

findings provide indirect support for the hypothesis of gut-lung translocation contributing to lung 372 

injury in critically ill patients, our lack of paired gut specimens precludes our determining 373 

whether gut-associated taxa (e.g. Enterobacteriaceae and Lachnospiracaeae spp.) were 374 

derived from the lower gastrointestinal tract or via another route (e.g. aspiration of altered 375 

pharyngeal microbiota). Future prospective studies of critically ill patients, in addition to 376 

sampling the lower respiratory tract, should collect time-matched specimens from the lower and 377 

upper gastrointestinal tract. 378 

 379 

In conclusion, in this prospective observational cohort study of mechanically ventilated critically 380 

ill patients, variation in baseline lung microbiota predicted ICU outcomes. Increased lung 381 

bacterial burden and lung enrichment with gut-associated bacteria were predictive of worse 382 

outcomes. The lung microbiome is an important and understudied source of variation among 383 

critically ill patients, and may represent a novel therapeutic target for the prevention and 384 

treatment of lung injury.385 
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Data availability 386 

Sequences are available via the NCBI Sequence Read Archive (accession number 387 

PRJNA553560). OTU tables, taxonomy classification tables, and metadata tables are available 388 

at https://github.com/dicksonlunglab/MARS_lung_microbiome. 389 
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Table E1. Documented Admission Diagnoses of Study Cohort 

Diagnosis Study cohort 
(n = 91) 

Cardiac arrest 19 (21) 
Cerebral vascular accident (ischemic or hemorrhagic) 9 (10) 
Pneumonia 7 (8) 
Congestive heart failure/cardiomyopathy 6 (7) 
Aortic aneurysm (rupture or dissection) 5 (5) 
Sepsis 5 (5) 
Meningitis 4 (4) 
Pulmonary embolism 3 (3) 
Bowel perforation 3 (3) 
Gastrointestinal hemorrhage 2 (2) 
Other 28 (31) 

“Other” includes: arrhythmia, cholangitis, elective surgery, hemoptysis, hypoglycemia, 
obtundation, pyelonephritis, rhabdomyolysis, seizures, soft tissue infection, trauma. 

Table E2. Diversity Indices as Predictors of Ventilator-Free Days in 
Mechanically Ventilated Critically Ill Patients 

Predictor 
Univariate 

Hazard ratio (CI) P value 
Shannon diversity index* 1.27 (0.87 - 1.86) 0.21 

Community richness† 1.01 (0.98 - 1.00) 0.09 

Community dominance‡ 1.02 (1.00 - 1.04) 0.10 

CI = Confidence interval (95%). 
* per 1-unit increase. 
† Unique OTUs per 1000 sequences, per OTU 
‡ Relative abundance of most dominant OTU, per % relative abundance 
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1 Supplemental Materials and Methods

2 Specimen processing

3 Cells were separated via centrifugation (15g for 15 min at 4 °C) and the cell-free supernatant was 

4 frozen at −80 °C for subsequent assays. Cell-free supernatants were subsequently centrifuged 

5 (22,500g for 30 min), and the resulting pellet was used for DNA isolation. Acellular mini-BAL pellets 

6 resuspended in 360µl ATL buffer (Qiagen DNeasy Blood & Tissue kit). Sterile laboratory water and 

7 AE buffer used in DNA isolation were collected and analyzed as potential sources of contamination, 

8 as were extraction controls (empty isolation tubes) and blank sequencing wells.

9

10 Bacterial DNA isolation

11 Genomic DNA was extracted from mini-BAL pellets (Qiagen DNeasy Blood & Tissue kit, Qiagen, 

12 Hilden, Germany) using a modified protocol previously demonstrated to isolate bacterial DNA(1). 

13 Sterile laboratory water and AE buffer used in DNA isolation were collected and analyzed as 

14 potential sources of contamination. Specimens were processed in a randomized order to minimize 

15 the risk of false pattern formation due to reagent contamination(2).

16

17 16s rRNA gene sequencing

18 The V4 region of the 16s rRNA gene was amplified using published primers(3) and the dual-

19 indexing sequencing strategy developed by the laboratory of Patrick D. Schloss(4). Sequencing was 

20 performed using the Illumina MiSeq platform (San Diego, CA), using a MiSeq Reagent Kit V2 (500 

21 cycles), according to the manufacturer’s instructions with modifications found in the Schloss 

22 SOP(5). Accuprime High Fidelity Taq was used in place of Accuprime Pfx SuperMix. Primary PCR 

23 cycling conditions were 95°C for two minutes, followed by 20 cycles of touchdown PCR (95°C 20 

24 seconds, 60°C 20 seconds and decreasing 0.3 degrees each cycle, 72°C 5 minutes), then 20 cycles 
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25 of standard PCR (95°C for 20 seconds, 55°C for 15 seconds, and 72°C for 5 minutes), and finished 

26 with 72°C for 10 minutes. 

27

28 Bacterial DNA quantification

29 Bacterial DNA was quantified using a QX200 Droplet Digital PCR System (BioRad, Hercules, CA). 

30 Primers and cycling conditions were performed according to a previously published protocol(6). 

31 Specifically, primers were 5’- GCAGGCCTAACACATGCAAGTC-3’ (63F) and 5’- 

32 CTGCTGCCTCCCGTAGGAGT-3’ (355R). The cycling protocol was 1 cycle at 95°C for 5 minutes, 

33 40 cycles at 95°C for 15 seconds and 60°C for 1 minute, 1 cycle at 4°C for 5 minutes, and 1 cycle at 

34 90°C for 5 minutes all at a ramp rate of 2°C/second. The BioRad C1000 Touch Thermal Cycler was 

35 used for PCR cycling. Droplets were quantified using the Bio-Rad Quantisoft software. Two 

36 replicates were used per sample. No-template control specimens were used and were run alongside 

37 mini-BAL specimens.

38

39 Statistical analysis

40 Sequence data were processed and analyzed using the software mothur v.1.39.5 according to the 

41 Standard Operating Procedure for MiSeq sequence data using a minimum sequence length of 250 

42 basepairs(5, 7). For each experiment and sequencing run, a shared community file and a 

43 phylotyped (genus-level grouping) file were generated using operational taxonomic units (OTUs) 

44 binned at 97% identity generated using the dist.seqs, cluster, make.shared and classify.otu 

45 commands in mothur. OTU numbers were arbitrarily assigned in the binning process and are 

46 referred to throughout the manuscript in association with their most specified level of taxonomy. 

47 Classification of OTUs was carried out using the mothur implementation of the Ribosomal Database 

48 Project (RDP) Classifier and the RDP taxonomy training set 14 (Trainset14_032015.rdp), available 

49 on the mothur website. Sequences are available via the NCBI Sequence Read Archive (accession 
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50 number PRJNA553560. OTU, taxonomy, and metadata tables are available at 

51 https://github.com/dicksonlunglab/MARS_lung_microbiome.

52

53 We performed microbial ecology analysis using the vegan package 2.4-1 and mvabund in R(8-10). 

54 For relative abundance and ordination analysis, samples were normalized to the percent of total 

55 reads and we restricted analysis to OTUs that were present at greater than 1% of the sample 

56 population. All OTUs were included in diversity analysis. Direct community similarity comparisons 

57 were performed using the Bray-Curtis similarity index. We performed ordinations using Principal 

58 Component Analysis on Hellinger-transformed normalized OTU tables generated using Euclidean 

59 distances(11). We determined significance of differences in community composition using 

60 PERMANOVA (adonis) with 10,000 permutations using Euclidean distances. We performed all 

61 analyses in R and GraphPad Prism 6. We compared means via Student’s T test and ANOVA with 

62 Holm-Sidak’s multiple comparisons test as appropriate. 

63

64 Adequacy of sequencing and exclusion of specimens

65 Bacterial community analysis (using 16S rRNA gene amplicon sequencing) was performed on all 

66 specimens. We obtained 1,690,680 16S rRNA gene copies (18,578 ± 9,139 reads per specimen). 

67 Three specimens had inadequate amplification (<1000 16S rRNA gene copies) and were excluded 

68 from sequencing analysis (though included in ddPCR analysis). No bacterial taxa were excluded 

69 from analysis.
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1 At a Glance Commentary

2 Scientific Knowledge on the Subject 

3 Recent studies have revealed that the lung microbiota of critically ill patients are profoundly 

4 altered and are correlated with alveolar and systemic inflammation. Altered lung microbiota may 

5 propel and perpetuate alveolar inflammation and injury among critically ill patients. Yet to date, 

6 no study has determined whether altered lung microbiota predict disease outcomes in this 

7 population.

8

9 What This Study Adds to the Field

10 We here show that among mechanically ventilated critically ill patients, variation in lung 

11 microbiota at admission predicts ICU outcomes. Two key features of the lung microbiome, 

12 bacterial burden and community composition, predict ventilator-free days. Specifically, 

13 increased lung bacterial DNA burden and enrichment of the lung microbiome with gut-

14 associated bacterial taxa (e.g. Lachnospiraceae and Enterobacteriaceae families) were 

15 predictive both of poor ICU outcomes and the clinical diagnosis of ARDS. This correlation 

16 between gut-associated bacteria and ARDS validates prior findings, and supports the 

17 hypothesis that translocation of gut bacteria to the lungs contributes to the pathogenesis of lung 

18 injury. Our results confirm the clinical significance of lung microbiota in critically ill patients. The 

19 lung microbiome is an important and underappreciated source of clinical heterogeneity among 

20 the critically ill, and represents a novel therapeutic target for the prevention and treatment of 

21 lung injury.
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22 Abstract

23 Rationale: Recent studies have revealed that in critically ill patients, lung microbiota are altered 

24 and correlate with alveolar inflammation. The clinical significance of altered lung bacteria in 

25 critical illness is unknown.

26 Objectives: To determine if clinical outcomes of critically ill patients are predicted by features of 

27 the lung microbiome at the time of admission.

28 Methods: We performed a prospective observational cohort study in an intensive care unit 

29 (ICU) at a university hospital. Lung microbiota were quantified and characterized using droplet 

30 digital PCR and bacterial 16S rRNA gene sequencing. Primary predictors were the bacterial 

31 burden, community diversity, and community composition of lung microbiota. The primary 

32 outcome was ventilator-free days, determined at 28 days post admission.

33 Measurements and Main Results: Lungs of 91 critically ill patients were sampled using 

34 miniature-bronchoalveolar lavage within 24 hours of ICU admission. Patients with increased 

35 bacterial lung bacterial burden had fewer ventilator-free days (HR 0.43, CI 0.21-0.88), which 

36 remained significant when controlled for pneumonia and severity of illness. The community 

37 composition of lung bacteria predicted ventilator-free days (P=0.003), driven by the presence of 

38 gut-associated bacteria (e.g. Lachnospiraceae and Enterobacteriaceae spp.). Detection of gut-

39 associated bacteria was also associated with the presence of the acute respiratory distress 

40 syndrome.

41 Conclusions: Key features of the lung microbiome (bacterial burden, enrichment with gut-

42 associated bacteria) predict outcomes in critically ill patients. The lung microbiome is an 

43 understudied source of clinical variation in critical illness, and represents a novel therapeutic 

44 target for the prevention and treatment of acute respiratory failure.
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45 Body

46 Introduction

47 In the past decade, advances in culture-independent microbiology have revealed that the lungs, 

48 previously considered sterile, harbor complex and dynamic communities of bacteria[1](1). Lung 

49 microbiota are detectable in health[2-4](2-4), altered in disease(5, 6)[5, 6], and correlate with 

50 variation in airway and alveolar immunity[2, 4, 7](2, 4, 7). In numerous chronic respiratory 

51 diseases, key features of the lung microbiome are predictive of disease outcomes. The burden 

52 of lung bacteria (measured by quantification of bacterial DNA) predicts mortality and disease 

53 progression in stable patients with idiopathic pulmonary fibrosis(8, 9) [8, 9]and responsiveness 

54 to inhaled antibiotics in patients with bronchiectasis(10). The diversity of sputum microbiota 

55 predicts mortality in patients with chronic obstructive pulmonary disease(11)[10], and the 

56 community composition of respiratory microbiota predicts exacerbations in bronchiectasis(12) 

57 [11] and respiratory infections in infants(13)[12]. 

58

59 The lung microbiota of critically ill patients are profoundly altered compared to those of healthy 

60 subjects(7, 14-16), and correlate with alveolar and systemic inflammation(7, 15). Specifically, 

61 among patients with the acute respiratory distress syndrome (ARDS), the lung microbiome is 

62 enriched with gut-associated bacteria(7), and early enrichment of the lung microbiome with gut-

63 associated bacteria (e.g. Enterobacteriaceae spp.) is associated with subsequent development 

64 of ARDS(15). Altered lung microbiota may propel and perpetuate alveolar inflammation and 

65 injury among critically ill patients, but to date no study has determined whether altered lung 

66 microbiota predict disease outcomes in this population.

67

68 To determine if lung microbiota at ICU admission predict clinical outcomes in critically ill 

69 patients, we performed a prospective observational cohort study on critically ill patients 

70 receiving mechanical ventilation. The primary outcome was ventilator-free days, adjudicated at 
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71 28 days following enrollment. We hypothesized that key features of the lung microbiome 

72 (bacterial burden, diversity, and community composition) would predict ICU outcomes, even 

73 when controlled for the presence of clinically-appreciated pneumonia.

74

75 Methods

76 Study design

77 This study was a secondary analysis of specimens collected from patients in the BASIC study 

78 (Biomarker Analysis in Septic ICu patients). This study was incorporated in the Molecular 

79 Diagnosis and Risk Stratification of Sepsis (MARS) project (NCT01905033) (17-20). The 

80 present study was conducted in the ICU of the Academic Medical Center and was approved by 

81 the institutional Medical Ethics committee; written informed consent was obtained from the 

82 patient representative prior to collection of airway samples via miniature bronchoalveolar lavage 

83 (IRB no. NL34294.018.10). Analysis was restricted to baseline specimens and data collected 

84 within 24 hours of admission.

85

86 Study population

87 All patients older than 18 years admitted to the ICU with an expected length of stay longer than 

88 24 hours were included in the MARS project. The BASIC study comprised a subset of patients 

89 included in the MARS study at the Amsterdam ICU with at least two “systemic inflammatory 

90 response syndrome” criteria, who received no antibiotics in the days preceding ICU admission. 

91 The current analysis is limited to consecutive patients who were included between September 

92 12, 2011, and November 7, 2013, receiving invasive mechanical ventilation and with informed 

93 consent for distal airway sampling. Adjudication of infection was assessed retrospectively using 

94 a four-point scale (ascending from none, possible, probable, to definite) using the Centers for 

95 Disease Control and Prevention and International Sepsis Forum consensus definitions as 

96 previously described(18). ARDS was scored on a daily basis by a team of well-trained clinical 
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97 researchers according to the American-European consensus criteria. After the publication of the 

98 Berlin definition, all cases were re-evaluated scored according to the new definition, as 

99 described previously(21). For the purposes of ARDS vs non-ARDS comparisons, we used 

100 adjudication at 24 hours following ICU admission. Severity of illness was quantified using the 

101 validated APACHE IV (Acute Physiology and Chronic Health Evaluation IV) (22) and SOFA 

102 (Sequential Organ Failure Assessment)(23) models. 

103

104 Specimen collection and processing

105 Miniature bronchoalveolar lavage specimens were collected using standard clinical protocol. In 

106 short, a 50 cm, 14 Fr tracheal suction catheter was introduced through the orotracheal tube and 

107 inserted until significant resistance was encountered. The catheter was then pulled back 1cm 

108 and 20 mL 0.9% saline was injected in 10 seconds and immediately aspirated, after which the 

109 catheter was removed. Specimens were stored on ice from the time of specimen collection until 

110 processing. DNA was extracted, amplified, and sequenced according to previously published 

111 protocols(24-26). Sequencing was performed using the Illumina MiSeq platform (San Diego, 

112 CA). Bacterial DNA was quantified using a QX200 Droplet Digital PCR System (BioRad, 

113 Hercules, CA). Additional details are provided in the online data supplement.

114

115 Statistical analysis

116 As detailed in the online data supplement, we performed microbial ecology analysis using the 

117 vegan package 2.4-1 and mvabund in R(27-29) following sequence processing with mothur(30, 

118 31). We pre-specified that key features of the microbiome (predictors) would be: 1) bacterial 

119 DNA burden (as quantified using droplet digital PCR), 2) bacterial community diversity (as 

120 calculated using the Shannon Diversity Index), and 3) community composition. We determined 

121 significance in community composition (e.g. mini-BAL specimens vs negative sequencing 

122 controls, ARDS vs non-ARDS mini-BAL specimens) using mvabund (model-based approach to 
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123 analysis of multivariate abundance data). To identify community members driving differences in 

124 community composition, we used 1) biplot analysis, 2) rank abundance analysis, and 3) a 

125 random forest ensemble learning approach (randomForest package in R, version 4.6-14(32)). 

126 For random forest, we determined variable importance using 100 forests. The importance 

127 parameter was set to TRUE to enable retrieval of importance metrics: mean decrease in 

128 accuracy for classification (ARDS vs. non-ARDS) or IncMSE for regression (ventilator-free 

129 days). Default settings were utilized for all other parameters. Following model creation, the 

130 unscaled feature importance metric was extracted from each forest, assembled into a 

131 dataframe, ordered by highest feature importance, and displayed in boxplots of the most 

132 important features across the 100 forests. Our primary index of feature importance was Mean 

133 Decrease in Accuracy, which ranks predictors by the relative loss in accuracy the occurs when 

134 they are removed from the predictive model. For random forest, we determined variable 

135 importance using 100 forests and default settings for all parameters. We compared means via 

136 Student’s T test (when normally distributed), the Mann-Whitney U test (when non-Gaussian), 

137 and ANOVA with Holm-Sidak’s multiple comparisons test as appropriate. Time-to-event analysis 

138 was performed using univariate and multivariate Cox proportional hazard models using 

139 ventilator-free days (adjudicated 28 days following enrollment) as a primary outcome; 

140 multivariate analysis adjusted for age, sex, severity of illness (APACHE IV), diagnosis of ARDS, 

141 and the presence of clinically-suspected pneumonia as determined both by the primary clinical 

142 service and via post-hoc CDC adjudication criteria. The primary outcome was the proportional 

143 hazard ratio for being alive and liberated from mechanical ventilation, as adjudicated 28 days 

144 following admission.

145

146 Role of the funding source

147 The funding agencies had no role in the design, conduct, and analysis of the study or in the 

148 decision to submit the manuscript for publication.
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156 Results

157 Study cohort

158 We obtained mini-BAL specimens from 91 critically ill patients within 24 hours of their ICU 

159 admission. The consort diagram is shown in the Appendix Figure E1. Patient demographics and 

160 clinical characteristics are reported in Table 1. 

161

Table 1. Demographics and Clinical Characteristics of 
Study Cohort

Characteristic Study cohort
(n = 91)

Mean age (SD), y 60.7 (15.4)
Male 55 (60)
Admission type

Medical 67 (74)
Surgical (emergency) 20 (22)
Surgical (elective) 4 (4)

Severity of illness
Mean SOFA (SD) 7.2 (4.1)
Mean APACHE IV (SD) 82.6 (28.5)

Lung injury
ARDS at admission 17 (19)
Mean PaO2:FiO2 (SD) 262.0 (104.7)

Comorbidities
Diabetes mellitus 13 (14)
Malignancy 11 (12)
COPD 5 (5)
Immune deficiency 4 (4)

ICU outcomes
Mean ventilator-free days (SD) 18.5 (10.5)
Mean ICU length of stay, days (SD) 5.6 (4.6)
30-day mortality 27 (30)

SOFA = Sequential Organ Failure Score. APACHE IV = Acute 
Physiology and Chronic Health Score IV. ARDS = Acute 
Respiratory Distress Syndrome. COPD = Chronic Obstructive 
Pulmonary Syndrome. Values are numbers (percentages) unless 
otherwise indicated.

Table 1. Demographics and Clinical Characteristics of Study Cohort

Characteristic
Study 
cohort
(n = 91)

Mean age (SD), y 60.7 (15.
4)
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Male 55 (60)
Admission type

Medical 67 (74)
Surgical (emergency) 20 (22)
Surgical (elective) 4 (4)

Severity of illness
Mean SOFA (SD) 7.2 (4.1

)
Mean APACHE IV (SD) 82.6 (28.

5)
Lung injury

ARDS at admission 17 (19)
Mean PaO2:FiO2 (SD) 262.0 (104

.7)
Comorbidities

COPD 5 (5)
Immune deficiency 4 (4)

ICU outcomes
Mean ventilator-free days (SD) 18.5 (10.

5)
Mean ICU length of stay, days (SD) 5.6 (4.6

)
30-day mortality 27 (30)

SOFA = Sequential Organ Failure Score. APACHE IV = Acute Physiology and Chronic Health Score IV. ARDS 
= Acute Respiratory Distress Syndrome. COPD = Chronic Obstructive Pulmonary Syndrome. Values are 
numbers (percentages) unless otherwise indicated.

162 The distribution of admission diagnoses is reported in Appendix Table E1. Bacterial 

163 quantification and 16S rRNA gene sequencing was performed on all specimens. Details 

164 regarding adequacy of sequencing and exclusion of specimens are provided in the online 

165 supplement.

166

167 The microbiota of lung specimens from critically ill patients are distinct from those of background 

168 sequencing controls

169 Low-biomass microbiome studies are vulnerable to contamination due to bacterial DNA present 

170 in reagents used in DNA extraction and library preparation(33). Our study used low-volume 

171 specimens (mini-BAL) from a low-microbial-biomass body site (the lower respiratory tract), and 

172 had their bacterial burden further decreased via a centrifugation step to remove eukaryotic 

173 cells(34). Given these concerns, we first asked whether a bacterial signal could be detected in 
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174 these mini-BAL specimens that was distinct from that of negative controls. We accomplished 

175 this by comparing the bacterial DNA in mini-BAL specimens with no-template controls (N = 25), 

176 AE buffer specimens (N = 8), sterile water used in DNA extraction (N = 4), extraction control 

177 specimens (N = 9), and blank sequencing wells (N = 6).

178

179 As shown in Supplemental Figure 12, we found clear evidence of distinct bacterial signal in 

180 mini-BAL specimens despite their low microbial biomass. Using ultrasensitive quantification of 

181 the bacterial 16S gene (via droplet digital PCR), we found significantly more bacterial DNA in 

182 mini-BAL specimens than in no-template control specimens (P < 0.001, Supplemental Figure 

183 1A2A). The median bacterial DNA burden was 21,246 bacterial gene copies per mL (mean 

184 118,411 copies ± 707,438). We found a wide range of bacterial burden (6,329 - 6,713,947 

185 copies/mL), ranging from comparable to no-template controls to 1000-fold greater than 

186 background. Using bacterial community analysis (16S rRNA gene amplicon sequencing), we 

187 confirmed that the identity of bacteria detected in mini-BAL specimens was distinct from that of 

188 negative control specimens (P < 0.0001, mvabund). Principal component analysis revealed 

189 distinct clustering of mini-BAL specimens apart from negative control specimens 

190 (Supplemental Figure 1B2B), though overlap did occur between some mini-BAL specimens 

191 and negative controls. Rank abundance analysis showed clear differences in relative 

192 abundance of taxa in negative controls and mini-BAL specimens (Supplemental Figure 1C2C). 

193 The dominant taxonomic group in negative controls specimens (OTU008:Pelomonas) 

194 comprised 25.5% of bacterial sequences in negative controls, but only 2.6% of sequences in 

195 mini-BAL specimens.

196

197 We thus concluded that while highly variable in their bacterial DNA burden and susceptibility to 

198 contamination, mini-BAL specimens contained a distinct bacterial signal from negative control 

199 specimens.
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200

201 Lung microbiota of critically ill patients are altered in patients with ARDS and enriched with gut-

202 associated bacteria (Enterobacteriaceae spp.)

203 We next compared the lung microbiota of critically ill patients with and without ARDS. Prior 

204 studies have demonstrated that the lung microbiota of patients with ARDS are altered and 

205 enriched with gut-associated bacteria. We compared lung bacterial communities in patients with 

206 and without physician-adjudicated ARDS. As shown in Figure 1, lung bacterial communities of 

207 patients with ARDS differed in the bacterial DNA burden and community composition compared 

208 to patients without ARDS. 

209

210 We first compared ARDS and non-ARDS specimens in their bacterial DNA burden and 

211 community diversity. Though highly variable, the bacterial DNA burden in mini-BAL specimens 

212 was greater in patients with ARDS than without ARDS (P = 0.014, Figure 1A). ARDS 

213 specimens did not differ in bacterial community diversity, either measured via the Shannon 

214 Diversity Index (P = 0.13) or community richness (P = 0.83) (Figure 1B). With both comparisons 

215 (bacterial DNA burden and diversity), within-group variation far exceeded across-group 

216 differences.

217

Page 63 of 90



15

Page 64 of 90



16

218 We next compared the community composition of bacterial communities in ARDS and non-

219 ARDS specimens using complementary approaches. We first visualized communities using 

220 principal component analysis (Figure 1C). While considerable taxonomic overlap was found 

221 across ARDS and non-ARDS specimens, there was a detectable separation of specimens 

222 according to ARDS status. This collective difference in community composition was confirmed 

223 statistically via mvabund, and was robust to taxonomic level of comparison (P = 0.014 at the 

224 OTU level of taxonomy, P = 0.013 at the family level, P = 0.003 at the phylum level). We next 

225 used biplot analysis to identify specific taxa responsible for this collective difference in 

226 community composition (Figure 1D). Whereas clusters of non-ARDS specimens were defined 

227 by bacterial taxa commonly detected in healthy lungs (Streptococcaceae spp., Veillonellaceae 

228 spp., and Prevotellaceae spp.) and taxa detected in negative sequencing control specimens 

229 (Verrucomicrobiaceae spp., Flavobacteriaceae spp.), ARDS specimens were more commonly 

230 characterized by Pasteurellaceae spp. and Enterobacteriacaeae spp..

231

232 We then used complementary techniques to identify ARDS-associated bacterial taxa. Using 

233 rank abundance visualization (Figure 1E), we compared the relative abundance of prominent 

234 taxa across ARDS and non-ARDS specimens. While many taxa were common to both group, 

235 the Enterobacteriaceae family was far more abundant ARDS specimens compared to non-

236 ARDS specimens (12.5% of all bacterial sequences in ARDS specimens compared to 0.18% of 

237 all bacterial specimens in non-ARDS specimens). We used unbiased regression-based 

238 (mvabund) and ensemble-learning (random forest) approaches to identify ARDS-enriched taxa. 

239 Mvabund, which rigorously controls for multiple comparisons, identified the Enterobacteriaceae 

240 family as enriched in ARDS specimens (P = 0.002). Random forest clearly identified the 

241 Enterobacteriaceae family as the most important taxonomic feature discriminating ARDS from 

242 non-ARDS specimens (Figure 1F). 

243
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244 We next compared our ARDS-associated Enterobacteriaceae taxonomic group with that of an 

245 ARDS-associated EnterobacteriacaeEnterobacteriaceae taxon in a recently published study of 

246 mechanically ventilated trauma patients(15). We compared the most prominent 

247 Enterobacteriaceae-classified OTU in our data set (OTU0005, comprising 61.5% of all 

248 Enterobacteriaceae-classified sequences) with the ARDS-associated Enterobacteriaceae 

249 identified by Panzer et al. (OTU2119418). As shown in Supplemental Figure 2A3A, the 

250 representative sequence of our study’s ARDS-associated Enterobacteriaceae OTU was 96% 

251 aligned with that of the ARDS-associated Enterobacteriaceae OTU identified by Panzer et al., 

252 differing in only 3 base pairs. We compared these ARDS-associated OTUs with the taxonomic 

253 classifications of closely-aligned sequences from the SILVA ribosomal RNA database. As 

254 shown in in Supplemental Figure 2B3B, both OTUs were exclusively identical to 

255 Enterobacteriaceae-classified taxa, including Escherichia coli, Enterobacter spp., and Klebsiella 

256 pneumoniae.

257

258 We thus concluded that the lung microbiota of patients with ARDS differ from those of critically 

259 ill patients without ARDS, driven by relative enrichment with gut-associated Enterobacteriaceae 

260 spp..

261

262 Lung microbiota are predictive of clinical outcomes in critically ill patients

263 We next asked if key features of the lung microbiome (bacterial burden, diversity, and 

264 community composition) predict clinical outcomes in critically ill patients. Our primary outcome 

265 was ventilator-free days measured at 28 days following admission. 

266

267 We first asked if bacterial burden of mini-BAL specimens (quantified using ddPCR of the 16S 

268 rRNA gene) predicted ICU outcomes (Table 2). Using univariate analysis, we found that 

269 increased baseline lung bacterial DNA burden predicted fewer ventilator-free days, either when 
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270 analyzed continuously (hazard ratio 0.43, confidence interval 0.21 - 0.88, P = 0.022) or when 

271 comparing tertiles defined by total lung bacterial DNA burden. In other words, for each 

272 additional 10-fold increase in lung bacterial DNA, the Hazard Ratio for favorable outcome 

273 (liberation from mechanical ventilation) was 0.43. As shown in Figure 2, the tertile of patients 

274 with the highest baseline lung bacterial DNA burden were less likely to be extubated and alive at 

275 7, 14, 21, and 28 days compared to patients with low bacterial DNA burden (HR 0.45, 

276 confidence interval 0.25 - 0.81, P = 0.008).

Table 2. Predictors of Ventilator-Free Days in Mechanically Ventilated Critically Ill Patients

Univariate Multivariate
Predictor Hazard ratio (CI) P value Hazard ratio (CI) P value

Lung bacterial DNA burden (continuous) 0.43 (0.21 - 0.88) 0.022 0.40 (0.18 - 0.86) 0.019
Lung bacterial DNA burden: middle tertile* 0.87 (0.50 - 1.51) 0.62
Lung bacterial DNA burden: highest tertile* 0.45 (0.25 - 0.81) 0.008
Shannon diversity index† 1.27 (0.87 - 1.86) 0.21
Age (years) 0.99 (0.98 - 1.01) 0.35 1.01 (0.99 - 1.03) 0.32
Gender (male) 1.26 (0.78 - 2.03) 0.35 0.90 (0.54 - 1.49) 0.68
SOFA 0.95 (0.90 - 1.01) 0.10
APACHE IV 0.98 (0.98 - 0.99) <0.001 0.98 (0.97 - 0.99) <0.001
Suspected pneumonia 1.01 (0.60 - 1.70) 0.96 0.90 (0.53 - 1.55) 0.71

Pneumonia (post-hoc, CDC criteria) 0.48 (0.18 - 1.33) 0.16
ARDS 0.51 (0.27 - 0.98) 0.044 0.61 (0.31 - 1.21) 0.16

CI = Confidence interval (95%). SOFA = Sequential Organ Failure Score. APACHE IV = Acute Physiology and Chronic Health 
Score IV. ARDS = Acute Respiratory Distress Syndrome. 
*Versus lowest tertile.
†Shannon diversity index, per 1-unit increase
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278 Pneumonia is common among mechanically ventilated patients, and a potential source of 

279 confounding in lung microbiome studies. In our study cohort, 27 patients (30%) had suspected 

280 pneumonia either at admission or within 48 hours; of these, 7 patients met CDC criteria for 

281 probable or confirmed pneumonia via post-hoc chart review. When we controlled our outcome 

282 analysis of lung bacterial DNA burden for the presence of clinically suspected pneumonia, it did 

283 not meaningfully change either the hazard ratio or significance of the model (HR = 0.43, P = 

284 0.021). Similarly, controlling for post-hoc adjudicated pneumonia (using CDC criteria) also did 

285 not influence the predictive power of lung bacterial DNA burden (HR = 0.43, P = 0.019). We 

286 thus concluded that lung bacterial burden predicts poor outcomes in mechanically ventilated 

287 critically ill patients, even when controlled for the presence of suspected or confirmed 

288 pneumonia.

289

290 We then performed multivariate analysis to determine whether lung bacterial DNA burden is 

291 independently predictive of poor outcomes. The relationship between increased lung bacterial 

292 DNA burden and fewer ventilator-free days remained significant when controlled for age, 
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293 gender, severity of illness (APACHE IV score), the presence of suspected pneumonia, and the 

294 presence of ARDS (HR 0.40, confidence interval 0.18 - 0.86, P = 0.019). We thus concluded 

295 that lung bacterial DNA burden is an independent predictor of poor outcomes in critically ill 

296 patients.

297

298 We next asked if bacterial diversity of lung bacteria predicts ICU outcomes (Figure 3A). 

299 Bacterial diversity of lung bacteria (as measured by the Shannon Diversity Index) did not 

300 significantly predict ICU outcomes (P = 0.22). While the most favorable ICU outcomes were 

301 observed among patients with high baseline lung bacterial diversity, followed in stepwise 

302 manner by patients with intermediate and low diversity, this difference in tertiles was not 

303 statistically significant. Other indices of lung bacterial diversity (community richness, community 

304 dominance) were also not significantly predictive of ICU outcomes (ventilator-free days, P > 

305 0.05 for all comparisons, Appendix Table E1E2).

306

307 We then performed multivariate analysis to determine whether lung bacterial DNA burden is 

308 independently predictive of poor outcomes. The relationship between increased lung bacterial 

309 DNA burden and fewer ventilator-free days remained significant when controlled for age, 

310 gender, severity of illness (APACHE IV score), the presence of suspected pneumonia, and the 

311 presence of ARDS (HR 0.40, confidence interval 0.18 - 0.86, P = 0.019). We thus concluded 

312 that lung bacterial DNA burden is an independent predictor of poor outcomes in critically ill 

313 patients.

314

315 Finally, we asked if the community composition of lung bacteria is predictive of ICU outcomes. 

316 We compared patient ventilator-free days with lung bacterial community structure using 

317 mvabund (model-based approach to analysis of multivariate abundance data). The overall 

318 community composition of baseline lung microbiota was significantly predictive of patient 
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319 ventilator-free days (P = 0.003 at the OTU level of taxonomy, P = 0.004 at the family level). 

320 Using random forest to identify taxa associated with poor outcomes, we identified the gut-

321 associated Lachnospiraceae and Enterobacteriaceae families as the taxa most strongly 

322 predictive of fewer ventilator-free days (Figure 3B). We then tested the hypotheses that 

323 detection of these taxa predicts poor outcomes. As shown in Figure 3B, detection of the 

324 Lachnospiracaeae family was significantly predictive of worse ICU outcomes (P = 0.020). The 

325 relationship between Enterobacteriaceae detection and ventilator-free days was not significant 

326 (P = 0.12). 
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327 We thus concluded that in the lung microbiota of critically ill patients, poor ICU outcomes are 

328 predicted both by increased bacterial burden and by community composition (specifically, 

329 enrichment with gut-associated taxa).

330

331 Discussion

332 The core finding of this study is that among mechanically ventilated critically ill patients, 

333 variation in lung microbiota at admission predicts ICU outcomes. Two key features of the lung 

334 microbiome, bacterial burden and community composition, predicted ventilator-free days. 

335 Specifically, increased lung bacterial DNA burden and enrichment of the lung microbiome with 
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336 gut-associated bacterial taxa (e.g. Lachnospiraceae and Enterobacteriaceae families) were 

337 predictive of poor ICU outcomes and the clinical diagnosis of ARDS.

338

339 Our study is the first to demonstrate that variation in lung microbiota is predictive of clinical 

340 outcomes in critically ill patients. This key finding is compatible with broader (non-ICU) lung 

341 microbiome studies, which have found that lung microbiota are predictive of disease outcomes 

342 in idiopathic pulmonary fibrosis(8, 9), chronic obstructive pulmonary disease(11), 

343 bronchiectasis(10, 12), and infants susceptible to respiratory infections(13). While these 

344 findings, robust across disease states, confirm that the lung microbiome is a risk factor for 

345 disease progression, a crucial and unanswered question is whether lung microbiota are a 

346 modifiable risk factor. Animal studies using germ-free and antibiotic-exposed mice suggest that 

347 manipulation of the microbiome does influence host susceptibility to lung inflammation, injury, 

348 and mortality(9, 35). Yet the precise role of gut and lung microbiota in the pathogenesis of acute 

349 and chronic lung injury has yet to be elucidated. Future studies should interrogate whether the 

350 microbiome’s role in lung disease is more attributable to remote (gut-lung) or local (lung-lung) 

351 host-microbiome interactions(2).

352

353 Our findings both validate several recent studies and provide new insight into the importance of 

354 the lung microbiome in critical illness. We have previously reported that the lung microbiome is 

355 enriched with gut-associated bacteria in ARDS and correlated with the severity of systemic and 

356 alveolar inflammation(7). In a subsequent study of mechanically ventilated trauma patients, the 

357 presence of gut-associated bacteria in endotracheal aspirates (Enterobacteriaceae spp.) was 

358 associated with ARDS onset(15). In our current study, we found that the lung microbiota of 

359 patients with ARDS was distinct from patients without ARDS, again driven by the presence of 

360 gut-associated bacteria (Enterobacteriaceae spp.). Indeed, the bacterial taxon most strongly 

361 correlated with ARDS status in our study (OTU0005:Enterobacteriaceae) was nearly identical to 
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362 that of the ARDS-associated bacterial taxon found by Panzer and colleagues(15). These 

363 multiple findings, now robust across cohorts, sequencing platforms, laboratories, and 

364 continents, all provide indirect support for the hypothesis that gut-lung translocation of bacteria 

365 contributes to the pathogenesis of lung injury in critically ill patients.

366

367 Importantly, our core findings remained significant when controlled for the clinical suspicion or 

368 post-hoc adjudication of pneumonia. While this may seem paradoxical (increased lung bacterial 

369 burden predicts poor outcomes, and pneumonia is a condition of high lung bacterial burden), 

370 recent culture-independent studies have revealed both the complexity of lung bacterial 

371 communities in mechanically ventilated patients(14, 16, 36) and the inadequacy of our 

372 conventional understanding of pneumonia(37). The lack of concordance between our molecular 

373 characterization of lung bacteria and clinical assessment of pneumonia likely reflects several 

374 key issues in the microbiology of injured lungs: 1) clinical adjudication of pneumonia, especially 

375 in mechanically ventilated patients, is imprecise and unreliable(38), 2) a dichotomous 

376 adjudication of pneumonia is too simplistic and reductionistic to meaningfully describe the 

377 complex ecologic spectrum of respiratory microbiota, and 3) the lung microbiome may play a 

378 role in the pathogenesis of disease processes not classically considered infectious (e.g. 

379 perpetuating inflammation and injury in ARDS). Our results highlight the need for improved 

380 molecular diagnostics to provide clinicians with a more accurate and comprehensive 

381 assessment of lung microbiota, as well as a more refined ecologic understanding of respiratory 

382 infections in critically ill patients.

383

384 Our study has several limitations that should prompt further validation and study. While we 

385 detected a distinct bacterial signal in our specimens, the bacterial biomass in these cell-free 

386 mini-BAL specimens was low, and in many specimens overlapped with background “sequencing 

387 noise.” Future studies, using larger volumes of whole BAL, will likely find even may find stronger 
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388 bacterial signal. Our mini-BAL sampling approach was non-directional; thus the anatomic site of 

389 sampling was not standardized across patients. While our findings remained significant when 

390 controlled for important clinical confounders, we could not control for all potential exposures 

391 (e.g. ICU antibiotic exposure or pre-ICU medications), and residual confounding is likely. Finally, 

392 while our findings provide indirect support for the hypothesis of gut-lung translocation 

393 contributing to lung injury in critically ill patients, our lack of paired gut specimens precludes our 

394 determining whether gut-associated taxa (e.g. Enterobacteriaceae and Lachnospiracaeae spp.) 

395 were derived from the lower gastrointestinal tract or via another route (e.g. aspiration of altered 

396 pharyngeal microbiota). Future prospective studies of critically ill patients, in addition to 

397 sampling the lower respiratory tract, should collect time-matched specimens from the lower and 

398 upper gastrointestinal tract.

399

400 In conclusion, in this prospective observational cohort study of mechanically ventilated critically 

401 ill patients, variation in baseline lung microbiota predicted ICU outcomes. Increased lung 

402 bacterial burden and lung enrichment with gut-associated bacteria were predictive of worse 

403 outcomes. The lung microbiome is an important and understudied source of variation among 

404 critically ill patients, and may represent a novel therapeutic target for the prevention and 

405 treatment of lung injury.
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406 Data availability

407 Sequences are available via the NCBI Sequence Read Archive (accession number

408 PRJNA553560). OTU tables, taxonomy classification tables, and metadata tables are available 

409 at https://github.com/dicksonlunglab/MARS_lung_microbiome.
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Table E1. Diversity Indices as Predictors of Ventilator-Free Days in 
Mechanically Ventilated Critically Ill Patients

Univariate
Predictor

Hazard ratio (CI) P value
Shannon diversity index* 1.27 (0.87 - 1.86) 0.21
Community richness† 1.01 (0.98 - 1.00) 0.09
Community dominance‡ 1.02 (1.00 - 1.04) 0.10

CI = Confidence interval (95%).
* per 1-unit increase.
† Unique OTUs per 1000 sequences, per OTU
‡ Relative abundance of most dominant OTU, per % relative abundance
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Table E1. Documented Admission Diagnoses of Study Cohort

Diagnosis Study cohort
(n = 91)

Cardiac arrest 19 (21)
Cerebral vascular accident (ischemic or hemorrhagic) 9 (10)
Pneumonia 7 (8)
Congestive heart failure/cardiomyopathy 6 (7)
Aortic aneurysm (rupture or dissection) 5 (5)
Sepsis 5 (5)
Meningitis 4 (4)
Pulmonary embolism 3 (3)
Bowel perforation 3 (3)
Gastrointestinal hemorrhage 2 (2)

Other 28 (31)

“Other” includes: arrhythmia, cholangitis, elective surgery, hemoptysis, hypoglycemia, 
obtundation, pyelonephritis, rhabdomyolysis, seizures, soft tissue infection, trauma.

Table E2. Diversity Indices as Predictors of Ventilator-Free Days in 
Mechanically Ventilated Critically Ill Patients

Univariate
Predictor Hazard ratio (CI) P value

Shannon diversity index* 1.27 (0.87 - 1.86) 0.21
Community richness† 1.01 (0.98 - 1.00) 0.09
Community dominance‡ 1.02 (1.00 - 1.04) 0.10
CI = Confidence interval (95%).
* per 1-unit increase.
† Unique OTUs per 1000 sequences, per OTU
‡ Relative abundance of most dominant OTU, per % relative abundance
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