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At a Glance Commentary: Although sleep apnea has been implicated as a cause of cognitive 
dysfunction, community-based studies and randomized controlled studies have shown conflicting 
findings, possibly due to inconsistencies in the measurement of sleep exposures and 
heterogeneity of the study samples. We investigated indicators of sleep-disordered breathing and 
various cognitive domains. Our results showed that overnight hypoxemia and self-reported 
sleepiness were associated with cognition dysfunction. Associations were strongest in 
individuals with the APOE-ε4 risk allele, suggesting heterogeneity in risk of sleep-disturbance 
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related cognitive impairment may arise due to inter-individual differences in genetic 
susceptibility to Alzheimer’s disease. 
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Abstract  

 

Rationale: There are conflicting findings regarding the link between sleep apnea and cognitive 
dysfunction.  
Objective: Investigate associations between indicators of sleep-disordered breathing (SDB) and 
cognitive function in the Multi-Ethnic Study of Atherosclerosis and assess effect modification by 
the apolipoprotein ε-4 (APOE-ε4) allele.  
Methods: A diverse population (N=1,752) underwent Type 2 in-home polysomnography, which 
included measurement of % sleep time <90% oxyhemoglobin saturation (%Sat<90%) and apnea-
hypopnea index (AHI). Epworth Sleepiness Scale score (ESS) and sleep apnea syndrome (SAS; 
AHI > 5 and ESS> 10) were also analyzed. Cognitive outcomes included the Cognitive Abilities 
Screening Instrument (CASI); Digit Symbol Coding Test (DSC); and Digit Span Tests (DST) 
Forward and Backward.  
Measurements and Main Results: Participants were 45.4% male, age 68.1(standard deviation: 
9.1) years with a median AHI=9.0 and mean ESS=6.0.  Approximately, 9.7% had SAS and 
26.8% had at least one copy of the APOε4 allele. In adjusted analyses, a one standard deviation 
increase in %Sat<90% and ESS score were associated with a poorer attention and memory 
assessed by the DST Forward score (β=-0.12 (standard error: 0.06) and β=-0.13 (0.06), 
respectively; P<0.05). SAS and higher ESS scores were also associated with poorer attention and 
processing speed as measured by the DSC, β=-0.69 (0.35) and β=-1.42 (0.35), respectively 
(P<0.05). The presence of APOE-ε4 allele modified the associations of %Sat<90% with DST 
forward and of ESS with DSCT, Pinteraction<0.05.  
Conclusions: Overnight hypoxemia and sleepiness were associated with cognition.  The average 
effect estimates were small, similar to effects estimated for several other individual dementia risk 
factors. Associations were strongest in APOE-ε4 risk allele carriers. Our results: 1) suggest that 
SDB be considered among a group of modifiable dementia risk factors; and 2) highlight the 
potential vulnerability of APOE-ε4 risk allele carriers with SDB. 
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Introduction 

Sleep-disordered breathing (SDB) is a highly prevalent condition that is characterized by 

repeated pauses (apneas or hypopneas) in breathing during sleep.1 SDB is particularly prevalent 

among elderly populations, older men and racial minority groups (African American, Hispanic, 

Asian).2–4 Individuals with SDB commonly report problems with cognition and may be  at 

increased risk for dementia.5  

SDB is associated with hypoxemia, sleep fragmentation, and cerebral vascular disease, 

which may directly affect brain function, and adversely affect cognition, as well as may 

indirectly lead to cognitive impairment via impairments in attention and executive function due 

to sleepiness.6  Results of meta-analyses demonstrate that there is strong evidence supporting the 

influence of SDB on attention, vigilance, memory (verbal immediate recall, delayed long-term 

visual and verbal recall, verbal learning), executive function, and visuospatial/constructional 

abilities.7,8 However, clinical and epidemiological studies as well as randomized control trials 

(RCT) have reported mixed results regarding the association between SDB, or SDB treatment, 

and cogniton.7–18 Although a number of reports have shown that the apnea-hypopnea index 

(AHI) and overnight hypoxemia are associated with cognitive deficits using a variety of 

performance tests,8,14,19–23 other studies have not.16,17,24–26  In the largest clinical trial to date 

evaluating the role of SDB treatment on cognitive outcomes, the Apnea Positive Pressure Long-

term Efficacy Study, primary analyses found no significant improvements in cognitive function 

with positive airway pressure (PAP) use among participants with sleep apnea, although small 

improvements were observed among severe patients in a secondary analysis.27  The 6-month 

intervention period may have been too short to demonstrate significant improvements; the 

adherence with PAP may have been inadequate for full response; and the participant enrollment 

biased toward less impaired subjects. Additionally, studies have shown improvements in 
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subdomains of executive function with CPAP use.18 Overall, the prior studies on SDB and 

cognition have shown conflicting results, possibly due to heterogeneity in populations studied, 

including disease severity or differences in underlying susceptibility as well as the measurement 

of sleep disturbances and cognitive test batteries. The selection of cognitive tests has varied and 

some of the traditional tests used in neuropsychology batteries do not have assessment of a sleep-

dependent effect.  In particular, there may be subgroups of individuals who may be more 

vulnerable to the deleterious effects of SDB on cognition due to genetic or other susceptibities.28    

Genetic factors may influence susceptibility to cognitive deficits resulting from SDB-

related stresses. In particular, the apolipoprotein epsilon 4 allele (APOE-ε4), found in 20% of the 

general population, is associated with a significantly increased risk for Alzheimer’s Disease 

(AD) and possibly SDB. 29–32 It is hypothesized that carriers of the APOE-ε4 allele have a 

limited response to physiological challenges which increase vulnerability to cognitive deficits,33 

and SDB specifically, by augmenting inflammation, may potentiate neuroinflammatory 

processes associated with APOE-ε4.  Nikodemova and colleagues found that SDB (AHI > 15) 

was associated with poorer performance among APOE-ε4 positive individuals who were 

employed in Wisconsin.28 In a cohort of older women, the AHI was more strongly associated 

with cognitive function in carriers of at least one APOE-ε4 allele relative to individuals without 

the allele.34 Lastly, in a sample of 36 community-dwelling older adults, higher levels of AHI 

were associated with lower memory scores among those with the APOE-ε4 allele only.35 

Although the results of these studies have important implications for older adults, they were 

based on predominantly white populations and should be replicated in more diverse samples. 

         We examined the relation between several measures of SDB obtained by polysomnography 

and standardized sleep questionnaires and cognitive function in a diverse sub-sample of middle-
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aged to older adults participating in the Multi-Ethnic Study of Atherosclerosis, (MESA).  We 

also assessed whether the association was modified by presence of the APOE-ε4 risk allele.    

Methods 

 MESA is a longitudinal study of 6,814 non-Hispanic white, African American, Hispanic 

and Chinese adults recruited between 2000-2002 when they were between 45-84 years old, and 

free of known cardiovascular disease.  Participants were recruited from six communities, in the 

United States (US) including Baltimore City and Baltimore County, Maryland; Chicago, Illinois; 

Forsyth County, North Carolina; Los Angeles County, California; Northern Manhattan and the 

Bronx, New York; and St. Paul, Minnesota. The study was designed to prospectively investigate 

risk factors for the development of subclinical cardiovascular disease and its progression to 

clinical disease.36 Additional details on the study design for MESA have been previously 

published.36 The current analyses used data from the MESA Sleep and MESA Cognition 

ancillary studies conducted with the 5th MESA follow-up examination.  

Sleep Measures 

 Between 2010-2013, MESA participants who did not report regular use of oral devices, 

nocturnal oxygen, or nightly positive airway pressure devices were invited to participate in the 

MESA Sleep Ancillary Study.37  MESA participants (N=2,060) agreed to participate and 

underwent in-home polysomnography (PSG) using a 15-channel monitor (Compumedics Somte 

® System; Compumedics Ltd., Abbotsville, AU). Sleep data were centrally scored37 and 

provided quantitative assessments of levels of overnight hypoxemia, apneas and hypopneas, 

arousal indices, and sleep architecture (including total sleep time, and sleep stage distributions).  

Our primary exposure variables are apnea-hypopnea index (AHI), % sleep time <90%  

oxyhemoglobin saturation (%Sat<90%), sleep apnea syndrome (SAS) and Epworth Sleepiness 

Scale (ESS) score.  AHI was calculated as the average number of all apneas plus hypopneas 
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associated with a 4% desaturation per hour of sleep. Given the older age of the cohort and 

interest in moderate or more severe disease, SDB was defined as an AHI>15 events/hour. SAS 

was defined as having an AHI >5 plus an ESS score >10.38 The ESS score assessed excessive 

daytime sleepiness using 8 scenarios, scored on a 4-Likert scale from 0 to 3, with the score 

ranging from 0 to 24.  

Other sleep measures that were assessed were AHI in rapid eye movement (REM) sleep, 

AHI in non-rapid eye movement (NREM) sleep, sleep duration (total sleep time), and sleep 

efficiency (the proportion of time spent asleep between sleep onset and lights on), all derived 

from PSG. Sleep duration and sleep efficiency was also assessed from actigraphy using the 

Actiwatch Spectrum wrist actigraph (Philips Respironics, Murrysville, PA). Participants wore 

the actigraph on the nondominant wrist for 7 consecutive days.  

MESA Cognitive Battery 

 MESA participants were administered three validated neuropsychological tests at the 5th 

follow-up exam for MESA. Examinations were administered in English, Spanish and Mandarin 

Chinese by centrally trained and certified examiners. The test battery was designed to assess 

several cognitive domains including global cognitive function, processing speed, and working 

memory.39  

 The Cognitive Abilities Screening Instrument (CASI) is a measure of global cognitive 

function developed for use across cultures.40 The CASI consists of 25 items representing the 

following cognitive abilities: attention, concentration, orientation, short-term memory, long-term 

memory, language, visual construction, verbal fluency, and abstraction/judgment. Items were 

summed to provide an overall cognitive function score ranging from 0-100. 

 The Digit Symbol-Coding (DSC) test is a subtest of the Wechsler Adult Intelligence 

Scale-III and measures attention and how quickly simple perceptual or mental operations can be 
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performed.41 A series of nine simple symbols (e.g., +, >) paired with numbers (numerals 1-9) are 

presented in a legend at the top of the page. Participants copy the correct symbol into an empty 

box directly below another box containing one of the randomly ordered numbers. The score 

(range: 0-133) is the number of correctly copied symbols in 120 seconds, with higher values 

indicating better performance.  

 The Digit Span Test (DST) is a subtest of the Wechsler Adult Intelligence Scale-III,41 and 

measures attention and working memory. The DST contains two measures-the Forward and 

Backward. For the DST Forward, participants are asked to repeat back spans of numbers read to 

them by the trained examiner. For every correctly recalled span, a point is awarded (scores 

ranging from 0 to 14). For DST Backward spans are repeated in reverse order with scores 

ranging from 0 to 14. DST subtests test are related but different cognitive functions42.  DST 

Forward performance reflects attention and concentration while DS-Backward is more sensitive 

to elements of executive control and visuospatial processing.39,43     

Genetic Effect Modifier 

           APOE-ε4 isoforms were estimated from single nucleotide polymorphisms (SNPS) rs7412 

and rs429358 from genotyping conducted using an Applied Biosystems TaqMan SNP system 

(ABI# C_904973_10 and C_3084793_20, respectively). In a quality control comparison, APOE-

ε4 isoforms showed excellent agreement (ĸ=0.965) with genotyped results in a MESA substudy 

that directly genotyped the APOE-ε4 alleles. Participants with at least one ε4 allele were 

classified as having the APOE-ε4 allele.    

Covariates 

We also considered race, age, body mass index (BMI), education level, smoking status, 

hypertension, diabetes, benzodiazepine use, and depressive symptoms as potential confounders 

and adjusted for these variables in analyses. Height and weight were measured and BMI (kg/m2) 
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was calculated. Education level was ascertained using an 8-level scale, and was further classified 

as less than high school, high school or graduate education diploma (GED), some college and 

college degree or higher. Gross family income was self-reported within categories including 

<$25,000, $25-$49,999, $50-$74,999 and >$75,000.  Smoking status was self-reported and 

categorized as current or never/former smoker. Participants with elevated systolic or diastolic 

blood pressure (≥ 130/85 mmHg based on direct measurements or reported use of 

antihypertensive medications) were classified as hypertensive. Participants with a fasting glucose 

≥ 126 mg/dL or taking insulin or oral diabetes medication were considered diabetic. 

Benzodiazepine use was self-reported by participants. Participants completed the Center for 

Epidemiologic Studies Depression Scale (CES-D) for a measure of depressive symptoms.  

Statistical Analysis 

 For descriptive purposes, we compared the characteristics and cognitive test values of the 

study sample by SDB status (AHI>15) using chi-square and t-tests for categorical and 

continuous measures, respectively. A series of linear regression models were fit to examine the 

association between each sleep exposure and cognitive function scores. Measures were modeled 

continuously, and log-transformations were used for CASI due to its skewed distribution. 

Associations were modeled in units of change in standard deviation (SD) for each sleep measure 

to facilitate comparisons. We used a sequential modeling approach with model 1 adjusting for 

age, sex, race, education;  model 2 further adjusting for diabetes, hypertension, and smoking; 

model 3 further adjusting for actigraphy-based sleep duration and sleep efficiency; and model 4 

further adjusting for ESS score. We found no evidence of confounding by benzodiazepine and 

depressive symptoms, however, in sensitivity analyses; we further adjusted for benzodiazepine 

use and depressive symptoms based on a priori knowledge that these variables are likely 

confounders of the association between sleep and cognition.  
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          To examine effect modification, we included an interaction term between sleep exposures 

and APOE-ε4 in separate models using model 2 covariates. Stratified analyses were presented 

using forest plots.  Interactions were considered significant based on a P value of <0.10. 

Results 

 A total of 1,752 individuals had data available for both PSG and cognitive tests. The 

sample had a mean age of 68.1 (standard deviation=9.1) years; 37.1% were non-Hispanic white 

with the remaining African American (26.3%) , Hispanic (24.6%) or Asian American (12.0%), 

and 54.6% were female. Compared to the MESA Exam 5 participants, individuals in this 

analysis were slightly younger, had a higher BMI and a higher proportion of Asian and Hispanic 

participants. There were no differences based on sex. Approximately 33.4% of the study sample 

met criteria for moderate or more severe SDB (AHI>15) and 9.7% met the definition of SAS. 

The median AHI, %Sat<90, and ESS were 9.0, 0.65, and 5.0, respectively. The prevalence of the 

APOE-ε4 allele was 26.8%.  

 Individuals with SDB were more likely to be male, older, obese, and less physically 

active relative to those without SDB, P<0.01 (Table 1). SDB groups also varied by race, P<0.10, 

and education level P<0.05. Higher education was associated with better cognition scores across 

all domains (P<0.01). In unadjusted analyses, scores for CASI and DST Forward and Backward 

did not differ by SDB classification (Table 2). The unadjusted DSC score was higher among 

individuals without SDB compared to those with SDB, P<0.01. 

 Higher levels of overnight hypoxemia and daytime sleepiness were associated with small 

estimated decrements in attention and concentration (DST Forward) performance after 

adjustment for demographic and education status (P’s <0.05) (Table 3).  Associations were 

slightly attenuated in fully adjusted analyses but remained statistically significant. Similarly, 

SAS and higher sleepiness scores were associated with small decements in attention and poorer 
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processing speed (DSC) after adjustment for demographic and education status (P’s <0.05). The 

association persisted in fully adjusted models. No other associations between sleep parameters 

and cognitive function were significant.  

In sensitivity analyses, we further adjusted for benzodiazepine use and depressive 

symptoms, and all associations remained and parameter estimates were similar except for the 

association between daytime sleepiness and DST Forward. Adjusting for depressive symptoms 

attenuated the association between daytime sleepiness and DST Forward (β=-0.09 (0.06)).   

Effect Modification (Figure 1) 

APOE-ε4 modified the association between %Sat<90% and DST Forward and between 

the ESS and DSC (Pinteraction <0.05). In stratified analyses, among those with the ε4 allele, more 

severe overnight hypoxemia was associated with a poorer DST Forward score (β=-0.37 (0.12), 

P<0.01). In contrast, no association was observed between hypoxemia and DST Forward scores 

among those individuals without the risk allele (β=-0.03 (0.08), P=0.68). Additionally, the 

association between sleepiness scores and poorer DSC scores were twice as strong in individuals 

with the presence of APOE-ε4 genotype as opposed to those without, β=-2.40 (0.63), P<0.01, 

β=-0.91 (0.43), P<0.05, respectively. There were no interactions between AHI or SAS and 

APOE-ε4.  

Discussion 

Among an ethnically and socioeconomically diverse population of middle-age to older 

individuals, we found that sleep-related hypoxemia and daytime sleepiness were cross-

sectionally associated with cognitive dysfunction, particularly tasks related to attention and 

concentration, but not with a test of global cognitive function or working memory. The AHI was 

not associated with any cognitive tests in this study. Moreover, we found evidence that the 

associations between SDB and cognition varied by APOE-ε4. Specifically, we found that APOE-
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ε4 carriers showed poorer attention and concentration as hypoxemia increased. Similarly, they 

showed poorer attention and slower processing speed as daytime sleepiness increased. Overall, 

these results suggest: a) overnight hypoxemia and self-reported sleepiness are more closely 

associated with cognitive function than the  AHI; b) associations with sleepiness persisted even 

after adjusting for sleep duration and sleep efficiency, suggesting that sleepiness may be a 

marker of SDB-related cognitive vulnerability;  c) the most sensitive of our measures of 

cognitive impairment was the DST Forward, a measure of attention and concentration; d) a 

genetic vulnerability to AD modified the key associations.  

Prior studies have been inconsistent regarding the association between sleep-disordered 

breathing and cognitive function, perhaps due to population heterogeneity (with underlying 

differences in susceptibility to SDB-related changes in cognitive function), level of severity of 

SDB among samples studied, and differences in methods and measures employed, including the 

range of cognitive assessments administered and cognitive domains assessed. Our findings are 

generally consistent with prior research that has reported that the severity of hypoxemia was 

related to poorer cognitive performance.13,14,20,22,34,44  Hypoxemia is thought to contribute to 

neurologic dysfunction through several pathways, including triggering of cellular events leading 

to apoptosis of hippocampal cells.45  Cerebral vascular damage also may result from hypoxemia 

related chemoreflex activation, sympathetic vasoconstriction, and nocturnal blood pressure 

surges.46,47 Intermittent hypoxemia influences both oxidative stress and inflammation, which can 

result in cognitive deficits by inducing neuronal cell loss within specific regions of the brain that 

lead to deficits.48   

We also observed significant associations between daytime sleepiness and cognition, and 

showed that these associations persisted after adjusting for sleep duration and sleep efficiency. 

These findings are consistent with the research of Cohen-Zion and colleagues, who found that 
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increases in daytime sleepiness were associated with decreased cognitive performance.17 

Similarly, among two separate adult populations, excessive daytime sleepiness was also 

associated with increased risk of cognitive impairment; and the authors suggest that daytime 

sleepiness could be a marker for cognitive decline.49,50 Reduced alertness resulting from 

sleepiness has been shown to decrease brain activity and function.51   Although cognitive deficits 

may be directly due to sleepiness (and reduced vigilance), sleepiness also may provide an 

integrative measure of the effects of multiple sleep disrupting exposures that may contribute to 

cognitive decline, serving as a marker that identifies those most vulnerable to SDB.52 Although 

sleepiness is not specific to SDB, our associations persisted after adjusting for both sleep 

duration and sleep efficiency, suggesting that insufficient sleep was not an explanation for our 

results. Results were slightly attenuated when adjusting for depressive symptoms, and 

underscore the possibility that altered mood also may be a marker or mediator of cognitive 

changes occurring with SDB. Sleep disturbance, fatigue and difficulty concentrating are cardinal 

features of depression.53  

Notably, the AHI was not associated with cognitive outcomes. Although the AHI is a 

standard clinical metric, there is increasing recognition that this measure has a number of 

limitations and does not provide specific information regarding physiological disturbances (e.g., 

may reflect different degrees of arousal and patterns of breathing and sleep disruptions). Recent 

studies of cognitive function in children also have shown no associations between the AHI and a 

comprehensive and sensitive cognitive battery, but showed associations between sleepiness, or 

Sleep Apnea Syndrome (defined by a mildly elevated AHI and elevated ESS score) and 

cognition.54 Further, current definitions of AHI allow for significant variation in level of 

hypoxemia across patients, and a 3 or 4% decrease in oxygen desaturation can result in levels of 

oxyhemoglobin that are still well within normal ranges and not indicative of hypoxemia. Our 
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results suggest the clinical assessment of sleepiness may be useful in identifying patients at 

increased risk for cognitive deficits associated with SDB.  

The MESA cognitive battery was chosen to provide an assessment of cognitive 

performance across several domains. We found that our sleep measures were mostly related to 

tests of attention, concentration, and short-term memory, cognitive domains also observed to be 

impacted in other studies of patients with SDB.13,15,19  Of all tests, the DST Forward was most 

consistently associated with sleepiness and hypoxemia. In contrast, a more cognitively 

challenging test, Digit Span Backwards, was not.  One explanation for this seemingly counter 

intuitive finding is that tasks that are more demanding may result in greater cognitive activation, 

and help recruit compensatory mechanisms that overcome attentional deficits.55 Neuroimaging 

studies provide evidence for such compensatory cognitive activation, particularly in the middle-

age to older adulthood age-range,56 and compensatory cerebral activation during cognitive 

processing has been documented in APOE-ε4 carriers.57  Since DST Backward is more difficult 

than DST Forward, participants may have increased their effort in the conduct of DST 

Backward. 

However, it is also important to note that DST Backward and DST Forward measure 

overlapping but different cognitive functions.58 DST Backward is well documented to capture 

cognitive control and executive functioning processes, while DST Forward is considered to be a 

measure of attention and short-term memory that does not place high demands on executive 

processes such as sequencing and planning.  While some studies have observed a negative 

impact of SDB on a broad range of executive function tasks, including both DST Forward and 

DST Backward,59 similar to our own observation, others find a negative impact on DST Forward 

but not DST Backward suggesting SDB impacts attention and short-term memory.60  Also, 

among e4 carriers, SDB is most consistently observed to negatively impact memory tasks.28,61 
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It is noteworthy that associations were not observed between sleep measures and a test of 

overall cognitive measure of cognition, the CASI, which may lack sufficient sensitivity. 

Characteristics of our cohort, a middle-aged, male and female, and community sample may have 

attenuated the associations.  It is also possible that residual confounding was present in 

associations with the CASI where cultural differences may be involved despite our adjustments 

in models. We did not observe an association of memory function and hypoxemia on the CASI, 

but the memory component only consists of recall of three words, which may not have been 

sufficiently sensitive to hypoxemia-associated memory impairment. Further, unlike older, clinic 

samples where patients are often concerned about cognitive function, our sample was not 

selective for either sleep related health or cognitive problems.  

There is growing recognition that there is large population variability in susceptibility to 

various exposures, which has stimulated the emergence of “precision medicine.” An important 

finding of our work is the observed effect modification by APOE-ε4. Notably, APOE-ε4 carriers 

had stronger associations between hypoxemia and attention/concentration as well as between 

sleepiness and processing speed.  Our findings are consistent with several studies.28,34,62,63 Data 

from the Wisconsin Sleep Cohort, showed an association between AHI and memory and 

executive function in carriers of the APOE-ε4 allele; however other measures of SDB were not 

assessed.28 In a sample of older women, AHI, central apnea index, and oxygen saturation nadir 

less than 90% were associated with a higher risk of cognitive impairment among APOE-ε4 

carriers.34  In our diverse cohort, we found that those with the risk allele appeared more 

vulnerable to the influence of overnight hypoxemia and sleepiness on attention, memory and 

processing speed than those without a risk allele. These associations are plausible given that 

SDB-related hypoxemia and oxidative stress most negatively impacts brain function in 

individuals genetically susceptible to synaptic degeneration.   
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It is noteworthy that other studies have observed lower performance on the Digit Span 

and DSC Tests to be predictive of cognitive decline and conversion to Mild Cognitive 

Impairment (MCI), as well as conversion from MCI to Alzheimer’s Disease. Kurt and 

colleagues, found that lower digit span performance in older adults with subjective memory 

complaints predicted future neuropsychological test performance indicative of MCI.64  In a larger 

cohort of 148 elderly adults with MCI, performance on the DSC was one of the strongest 

predictors of time to convert to Alzheimer’s Disease.65 MCI encompasses a range of cognitive 

deficits, some of which may present before others.66 SDB-associated performance deficits in 

digit span measures of attention, speed of processing and working memory may be the first to 

capture subtle cognitive impairments that are indicative of subsequent MCI and dementia. While 

longitudinal studies are required to more fully investigate this possibility, the clinical 

implications are substantial. Along with APOE-ε4 risk allele status, MCI status is one of the 

most robust risk factors for the development of dementia.  

Given the current lack of effective treatments for AD and dementia there is a significant 

focus on secondary prevention, with recent research supporting the value in targeting multiple 

modifiable risk factors.67–69 Although each risk factor may individually have small effect, indices 

that include multiple behavioral, lifestyle and somatic risk factors together may account for as 

much as 50% of the excessive risk for dementia.68,69   The association of SDB with dementia,13,14 

and poorer performance on cognitive function measures, suggest that SDB represents an 

additional modifiable risk factor to reduce the risk of conversion from typical aging to MCI, and 

from MCI to dementia. Although our average effect estimates for SDB indices were small, they 

were significant even after adjustment for traditional risk factors such as age, hypertension and 

diabetes.  
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This study contributes to the literature in several additional ways. We analyzed indices of 

SDB with three well-standardized neuropsychological tests. Standardized polysomnography 

allowed us to adjust for objective measures of sleep duration and sleep efficiency.  Our study 

cohort was ethnically and racially diverse, providing greater generalizability than prior studies. 

Genetic data allowed us to test for effect modification. Despite these strengths, our study also has 

limitations. Although we included several sleep measures, these were derived from a single night 

of PSG, which does not capture variation over time. It is possible that duration of SDB and age 

of onset are important factors in influencing cognitive function. Our analyses were cross-

sectional which does not allow us to infer causality. Lastly, it is possible that more sensitive 

cognitive tests would have yielded different results. Given the correlation among exposures and 

outcomes, we did not adjust for multiple comparisons.  

Conclusion 

Cognitive impairment is highly prevalent among elderly populations, and is associated 

with increased disability, neuropsychiatric symptoms and health care costs.70–72 Our results 

suggest that more severe overnight hypoxemia and sleepiness may be related to poorer cognitive 

function, especially attention, concentration, and process speed in middle-aged to older adults, 

and that the risk is greater among carriers of the APOE-ε4 alleles, a known risk factor for 

Alzheimer’s disease. With use of this type of information, future risk stratification may help to 

identify individuals at increased risk for SDB-related cognitive deficits and target those 

individuals for studies evaluating the impact of treatment or prevention. 
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Table 1. Study Population Characteristics by Sleep-Disordered Breathing (N=1752) 

 Sleep-Disordered Breathing (AHI>15)  

Characteristic Yes  
(n=585) 

Mean (SD) or No. 
(%) 

No 
(n=1167) 

Mean (SD) or No. (%) 

P-
Value* 

Age, y 68.6 (8.8) 67.9 (9.2) 0.11 

Male 356 (60.8) 440 (37.7) <0.001 

Education   0.05 

   <HS 94 (16.1) 156 (13.4)  

   HS or GED 86 (14.7) 203 (17.4)  

   Some College 156 (26.7) 262 (22.5)  

   >College 249 (42.6) 543 (46.6)  

Income    

   <$25,000 175 (30.5) 289 (25.4) 0.16 

   $25-$49,999 144 (25.1) 309 (27.1)  

   $50-$74,999 95 (16.6) 205 (18.0)  

   >$75,000 159 (27.7) 336 (29.5)  

Race/Ethnicity   0.10 

    Non-Hispanic White 197 (33.7) 453 (38.8)  

    Chinese 79 (13.5) 131 (11.2)  

    African American 152 (26.0) 309 (26.5)  

    Hispanic 157 (26.8) 274 (23.5)  

Body Mass Index 30.5 (5.8) 27.6 (5.1) <0.001 

COPD 11 (1.9) 23 (2.0) 0.90 

Depressive Symptoms 8.0 (7.1) 8.1 (7.8) 0.83 

Antidepressant use 3 (0.5) 15 (1.3) 0.13 

Benzodiazepine use 14 (2.4) 66 (5.6) 0.002 

Current Smoker 32 (5.5) 87 (7.5) 0.12 

Physical Activity, h per day 9.0 (5.9) 9.6 (6.1) 0.05 
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Total Sleep Timea, min 392.5 (75.3) 387.7 (83.7) 0.23 

Sleep Efficiencya 89.9 (3.6) 89.8 (3.8) 0.65 

% REMb 16.6 (6.9) 19.1 (6.1) <0.001 

% Slow Wave Sleepb 8.4 (8.2) 10.9 (9.2) <0.001 

AHI, median (IQR) b  32.2 (19.4-41.2) 5.6 (2.0-9.0) <0.001 

Arousal Indexb 29.5 (13.2) 18.4 (8.9) <0.001 

% Time Oxyhemoglobin 

Saturation <90%b, median (IQR) 

8.2 (1.6-9.4) 1.6 (0.0-0.97) <0.001 

Sleep Apnea Syndrome 97 (16.8) 71 (6.2) <0.001 

Epworth Sleepiness Scale 6.4 (4.3) 5.8 (3.9) 0.01 

APOE-ε4 allele 150 (26.7) 297 (26.8)  

 IQR=Interquartile range; *chi-square or ANOVA tests for categorical or continuous variables (respectively); 
aMeasures are based on actigraphy;  bMeasures are based on in-home polysomnography. 
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Table 2. Unadjusted Values (Mean, SD) of Cognitive Function Tests by Sleep-Disordered 

Breathing  

Cognitive Function SDB No SDB 

CASIc 87.6 (8.2) 88.3 (8.4) 

DSCa 49.8 (18.2) 53.0 (18.7) 

Digit Span Forward 9.5 (2.8) 9.6 (2.8) 

Digit Span Backwardc 5.5 (2.3) 5.7 (2.4) 

 CASI-Cognitive Abilities Screening Instrument (version 2); DSC-Digit Symbol Coding; aP<0.01, bP<0.05, cP<0.10  
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Table 3. Regression Analysis of Sleep-Disordered Breathing Indices and Cognitive Function, N=1752. 

 CASI DSC DST Forward DST Backward 

 Model 

1 

Model 

2 

Model  

3 

Model  

4 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

AHI 0.0004 
(0.0023) 

0.0004 
(0.0023) 

0.0005 
(0.0023) 

0.0004 
(0.0023) 

-0.140 
(0.354) 

-0.016 
(0.353) 

-0.035 
(0.354) 

0.089 
(0.355) 

0.020 
(0.064) 

0.032 
(0.065) 

0.041 
(0.066) 

0.064 
(0.066) 

-0.003 
(0.053) 

0.017 
(0.053) 

0.012 
(0.054) 

0.015 
(0.054) 

% Saturation 
<90% 

0.004 
(0.002)c 

0.004 
(0.002)c 

0.004 
(0.002)c   

0.004 
(0.002)c 

-0.693 
(0.344) 

-0.447 
(0.341) 

-0.428 
(0.341) 

-0.295 
(0.341) 

-0.151 

(0.063)
b
 

-0.137 

(0.063)
 

b
 

-0.138 

(0.063)
b
 

-0.123 

(0.063)
b
 

-0.027 
(0.051) 

-0.014 
(0.052) 

-0.011 
(0.052) 

-0.007 
(0.052) 

SAS 0.001 
(0.002) 

0.001 
(0.002) 

0.001 
(0.002) 

------ -0.903 

(0.345)
a
 

-0.698 

(0.344)
b
 

-0.694 

(0.346)
b
 

------ -0.066 
(0.062) 

-0.056 
(0.064) 

-0.062 
(0.064) 

  

----- -0.011 
(0.052) 

-0.004 
(0.052) 

-0.002  
(0.052) 

------ 

ESS 0.0005 
(0.0022) 

0.0001 
(0.0023) 

0.0003 
(0.0023)  

------ -1.55 

(0.345)
a
 

-1.43 

(0.344)
a
 

-1.42 

(0.346)
a
 

------ -0.148 

(0.063)
b
 

-0.127 

(0.064)
b
 

-0.132 

(0.064)
b
 

----- -0.035 
(0.052) 

-0.019 
(0.052) 

-0.014 
(0.053) 

------ 

Model 1: Adjusted for age, sex, race, education level 
Model 2: Model 1 + age, sex, race, education level, diabetes, hypertension, smoking 
Model 3: Model 2 + sleep duration, sleep efficiency 
Model 4: Model 3 + sleepiness 
a
P<0.01, bP<0.05, cP<0.10 

Estimates are standardized 
Shown are beta coefficients and standard errors 
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Figure 1. 

A.  

 

B.  

 

 

 

 

Figure 1illustrates forest plots showing the association between indices of SDB and cognitive tests by APOε4 risk 

allele. The data presented are the associations between sleep indices and cognitive outcome stratified by APOε4. (A) 

% Saturation <90% and Digit Span Forward Test by APOε4. (B) Epworth Sleepiness Scale and Digit Symbol 

Coding Test by APOε4.*P<0.05                                                    
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At a Glance Commentary: Although sleep apnea has been implicated as a cause of cognitive 
dysfunction, community-based studies and randomized controlled studies have shown conflicting 
findings, possibly due to inconsistencies in the measurement of sleep exposures and 
heterogeneity of the study samples. We investigated indicators of sleep-disordered breathing and 
various cognitive domains. Our results showed that overnight hypoxemia and self-reported 
sleepiness were associated with cognition dysfunction. Associations were strongest in 
individuals with the APOE-ε4 risk allele, suggesting heterogeneity in risk of sleep-disturbance 
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related cognitive impairment may arise due to inter-individual differences in genetic 
susceptibility to Alzheimer’s disease. 
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Abstract  

 

Rationale: There are conflicting findings regarding the link between sleep apnea and cognitive 
dysfunction.  
Objective: Investigate associations between indicators of sleep-disordered breathing (SDB) and 
cognitive function in the Multi-Ethnic Study of Atherosclerosis and assess effect modification by 
the apolipoprotein ε-4 (APOE-ε4) allele.  
Methods: A diverse population (N=1,752) underwent Type 2 in-home polysomnography, which 
included measurement of % sleep time <90% oxyhemoglobin saturation (%Sat<90%) and apnea-
hypopnea index (AHI). Epworth Sleepiness Scale score (ESS) and sleep apnea syndrome (SAS; 
AHI > 5 and ESS> 10) were also analyzed. Cognitive outcomes included the Cognitive Abilities 
Screening Instrument (CASI); Digit Symbol Coding Test (DSC); and Digit Span Tests (DST) 
Forward and Backward.  
Measurements and Main Results: Participants were 45.4% male, age 68.1(standard deviation: 
9.1) years with a median AHI=9.0 and, mean ESS=6.0. , Approximately, 9.7% had SAS and 
26.8% had at least one copy of the APOε4 allele. In adjusted analyses, Aa one standard deviation 
increase in %Sat<90% and ESS score were associated with a poorer attention and memory 
assessed by the DST Forward score (β=-0.12 (standard error: 0.06) and β=-0.13 (0.06), 
respectively; P<0.05). SAS and higher ESS scores were also associated with poorer attention and 
processing speed as measured by the DSC, β=-0.69 (0.35) and β=-1.42 (0.35), respectively 
(P<0.05). The presence of APOE-ε4 allele modified the associations of  %Sat<90% with DST 
forward and of ESS with DSCT, Pinteraction<0.05.  
Conclusions: Overnight hypoxemia and sleepiness were associated with cognition.  The average 
effect estimates were small, similar to effects estimated for several other individual dementia risk 
factors. Associations were strongest in APOE-ε4 risk allele carriers. Our results: 1) suggest that 
SDB be considered among a group of modifiable dementia risk factors; and 2) highlight the 
potential vulnerability  of APOE-ε4 risk allele carriers with SDB. 
 
 
Word count: 286 
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Introduction 

Sleep-disordered breathing (SDB) is a highly prevalent condition that is characterized by 

repeated pauses (apneas or hypopneas) in breathing during sleep.1 SDB is particularly prevalent 

among elderly populations, older men and racial minority groups (African American, Hispanic, 

Asian).2–4 Individuals with SDB commonly report problems with cognition and may be  at 

increased risk for dementia.5  

SDB is associated with hypoxemia, sleep fragmentation, and cerebral vascular disease, 

which may directly affect brain function, and adversely affect cognition, as well as may 

indirectly lead to cognitive impairment via impairments in attention and executive function due 

to sleepiness.6  Results of meta-analyses demonstrate that there is strong evidence supporting the 

influence of SDB on attention, vigilance, memory (verbal immediate recall, delayed long-term 

visual and verbal recall, verbal learning), executive function, and visuospatial/constructional 

abilities.7,8 However, clinical and epidemiological studies as well as randomized control trials 

(RCT) have reported mixed results regarding the association between SDB, or SDB treatment, 

and cogniton.7–18 Although a number of reports have shown that the apnea-hypopnea index 

(AHI) and overnight hypoxemia are associated with cognitive deficits using a variety of 

performance tests,8,14,19–23 other studies have not.16,17,24–26  In the largest clinical trial to date 

evaluating the role of SDB treatment on cognitive outcomes, the Apnea Positive Pressure Long-

term Efficacy Study, primary analyses found no significant improvements in cognitive function 

with positive airway pressure (PAP) use among participants with sleep apnea, although small 

improvements were observed among severe patients in a secondary analysis.27  The 6-month 

intervention period may have been too short to demonstrate significant improvements; the 

adherence with PAP may have been inadequate for full response; and the participant enrollment 

biased toward less impaired subjects. Additionally, studies have shown improvements in 
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subdomains of executive function with CPAP use.18 Overall, the prior studies on SDB and 

cognition have shown conflicting results, possibly due to heterogeneity in populations studied, 

including disease severity or differences in underlying susceptibility as well as the measurement 

of sleep disturbances and cognitive test batteries. The selection of cognitive tests hasve varied 

and some of the traditional tests used in neuropsychology batteries do not have assessment of a 

sleep-dependent effect.  In particular, there may be subgroups of individuals who may be more 

vulnerable to the deleterious effects of SDB on cognition due to genetic or other susceptibities.28    

Genetic factors may influence susceptibility to cognitive deficits resulting from SDB-

related stresses. In particular, the apolipoprotein epsilon 4 allele (APOE-ε4), found in 20% of the 

general population, is associated with a significantly increased risk for Alzheimer’s Disease 

(AD) and possibly SDB. 29–32 It is hypothesized that carriers of the APOE-ε4 allele have a 

limited response to physiological challenges which increase vulnerability to cognitive deficits,33 

and SDB specifically, by augmenting inflammation, may potentiate neuroinflammatory 

processes associated with APOE-ε4.  Nikodemova and colleagues found that SDB (AHI > 15) 

was associated with poorer performance among APOE-ε4 positive individuals who were 

employed in Wisconsin.28 In a cohort of older women, the AHI was more strongly associated 

with cognitive function in carriers of at least one APOE-ε4 allele relative to individuals without 

the allele.34 Lastly, in a sample of 36 community-dwelling older adults, higher levels of AHI 

were associated with lower memory scores among those with the APOE-ε4 allele only.35 

Although the results of these studies have important implications for older adults, they were 

based on predominantly white populations and should be replicated in more diverse samples. 

         We examined the relation between several measures of SDB obtained by polysomnography 

and standardized sleep questionnaires and cognitive function in a diverse sub-sample of middle-
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aged to older adults participating in the Multi-Ethnic Study of Atherosclerosis, (MESA).  We 

also assessed whether the association was modified by presence of the APOE-ε4 risk allele.    

Methods 

 MESA is a longitudinal study of 6,814 non-Hispanic white, African American, Hispanic 

and Chinese adults recruited between 2000-2002 when they were between 45-84 years old, and 

free of known cardiovascular disease.  Participants were recruited from six communities, in the 

United States (US) including Baltimore City and Baltimore County, Maryland; Chicago, Illinois; 

Forsyth County, North Carolina; Los Angeles County, California; Northern Manhattan and the 

Bronx, New York; and St. Paul, Minnesota. The study was designed to prospectively investigate 

risk factors for the development of subclinical cardiovascular disease and its progression to 

clinical disease.36 Additional details on the study design for MESA have been previously 

published.36 The current analyses used data from the MESA Sleep and MESA Cognition 

ancillary studies conducted with the 5th MESA follow-up examination.  

Sleep Measures 

 Between 2010-2013, MESA participants who did not report regular use of oral devices, 

nocturnal oxygen, or nightly positive airway pressure devices were invited to participate in the 

MESA Sleep Ancillary Study.37  MESA participants (N=2,060) agreed to participate and 

underwent in-home polysomnography (PSG) using a 15-channel monitor (Compumedics Somte 

® System; Compumedics Ltd., Abbotsville, AU). Sleep data were centrally scored37 and 

provided quantitative assessments of levels of overnight hypoxemia, apneas and hypopneas, 

arousal indices, and sleep architecture (including total sleep time, and sleep stage distributions).  

Our primary exposure variables are apnea-hypopnea index (AHI), % sleep time <90%  

oxyhemoglobin saturation (%Sat<90%), sleep apnea syndrome (SAS) and Epworth Sleepiness 

Scale (ESS) score.  AHI was calculated as the average number of all apneas plus hypopneas 
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associated with a 4% desaturation per hour of sleep. Given the older age of the cohort and 

interest in moderate or more severe disease, SDB was defined as an AHI>15 events/hour. SAS 

was defined as having an AHI >5 plus an ESS score >10.38 The ESS score assessed excessive 

daytime sleepiness using 8 scenarios, scored on a 4-Likert scale from 0 to 3, with the score 

ranging from 0 to 24.  

Other sleep measures that were assessed were AHI in rapid eye movement (REM) sleep, 

AHI in non-rapid eye movement (NREM) sleep, sleep duration (total sleep time), and sleep 

efficiency (the proportion of time spent asleep between sleep onset and lights on), all derived 

from PSG. Sleep duration and sleep efficiency was also assessed from actigraphy using the 

Actiwatch Spectrum wrist actigraph (Philips Respironics, Murrysville, PA). Participants wore 

the actigraph on the nondominant wrist for 7 consecutive days.  

MESA Cognitive Battery 

 MESA participants were administered three validated neuropsychological tests at the 5th 

follow-up exam for MESA. Examinations were administered in English, Spanish and Mandarin 

Chinese by centrally trained and certified examiners. The test battery was designed to assess 

several cognitive domains including global cognitive function, processing speed, and working 

memory.39  

 The Cognitive Abilities Screening Instrument (CASI) is a measure of global cognitive 

function developed for use across cultures.40 The CASI consists of 25 items representing the 

following cognitive abilities: attention, concentration, orientation, short-term memory, long-term 

memory, language, visual construction, verbal fluency, and abstraction/judgment. Items were 

summed to provide an overall cognitive function score ranging from 0-100. 

 The Digit Symbol-Coding (DSC) test is a subtest of the Wechsler Adult Intelligence 

Scale-III and measures attention and how quickly simple perceptual or mental operations can be 
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performed.41 A series of nine simple symbols (e.g., +, >) paired with numbers (numerals 1-9) are 

presented in a legend at the top of the page. Participants move copy the correct symbol into an 

empty box directly below another box containing one of the randomly ordered numbers. The 

score (range: 0-133) is the number of correctly copied symbols in 120 seconds, with higher 

values indicating better performance.  

 The Digit Span Test (DST) is a subtest of the Wechsler Adult Intelligence Scale-III,41 and 

measures attention and working memory. The DST contains two measures-the Forward and 

Backward. For the DST Forward, participants are asked to repeat back spans of numbers read to 

them by the trained examiner. For every correctly recalled span, a point is awarded (scores 

ranging from 0 to 14). For DST Backward spans are repeated in reverse order with scores 

ranging from 0 to 14. DST subtests test are related but different cognitive functions42.  DST 

Forward performance reflects attention and concentration while DS-Backward is more sensitive 

to elements of executive control and visuospatial processing.39,43     

Genetic Effect Modifier 

           APOE-ε4 isoforms were estimated from single nucleotide polymorphisms (SNPS) rs7412 

and rs429358 from genotyping conducted using an Applied Biosystems TaqMan SNP system 

(ABI# C_904973_10 and C_3084793_20, respectively). In a quality control comparison, APOE-

ε4 isoforms showed excellent agreement (ĸ=0.965) with genotyped results in a MESA substudy 

that directly genotyped the APOE-ε4 alleles. Participants with at least one ε4 allele were 

classified as having the APOE-ε4 allele.    

Covariates 

We also considered race, age, body mass index (BMI), education level, smoking status, 

hypertension, diabetes, benzodiazepine use, and depressive symptoms as potential confounders 

and adjusted for these variables in analyses. Height and weight were measured and BMI (kg/m2) 
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was calculated. Education level was ascertained using an 8-level scale, and was further classified 

as less than high school, high school or graduate education diploma (GED), some college and 

college degree or higher. Gross family income was self-reported within categories including 

<$25,000, $25-$49,999, $50-$74,999 and >$75,000.  Smoking status was self-reported and 

categorized as current or never/former smoker. Participants with elevated systolic or diastolic 

blood pressure (≥ 130/85 mmHg based on direct measurements or reported use of 

antihypertensive medications) were classified as hypertensive. Participants with a fasting glucose 

≥ 126 mg/dL or taking insulin or oral diabetes medication were considered diabetic. 

Benzodiazepine use was self-reported by participants. Participants completed the Center for 

Epidemiologic Studies Depression Scale (CES-D) for a measure of depressive symptoms.  

Statistical Analysis 

 For descriptive purposes, we compared the characteristics and cognitive test values of the 

study sample by SDB status (AHI>15) using chi-square and t-tests for categorical and 

continuous measures, respectively. A series of linear regression models were fit to examine the 

association between each sleep exposure and cognitive function scores. Measures were modeled 

continuously, and log-transformations were used for CASI due to its skewed distribution. 

Associations were modeled in units of change in standard deviation (SD) for each sleep measure 

to facilitate comparisons. We used a sequential modeling approach with model 1 adjusting for 

age, sex, race, education;  model 2 further adjusting for diabetes, hypertension, and smoking; 

model 3 further adjusting for actigraphy-based sleep duration and sleep efficiency; and model 4 

further adjusting for ESS score. We found no evidence of confounding by benzodiazepine and 

depressive symptoms, however, in sensitivity analyses; we further adjusted for benzodiazepine 

use and depressive symptoms based on a priori knowledge that these variables are likely 

confounders of the association between sleep and cognition.  
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          To examine effect modification, we included an interaction term between sleep exposures 

and APOE-ε4 in separate models using model 2 covariates. Stratified analyses were presented 

using forest plots.  Interactions were considered significant based on a P value of <0.10. 

Results 

 A total of 1,752 individuals had data available for both PSG and cognitive tests. The 

sample had a mean age of 68.1 (standard deviation=9.1) years; 37.1% were non-Hispanic white 

with the remaining African American (26.3%) , Hispanic (24.6%) or Asian American (12.0%), 

and 54.6% were female. Compared to the MESA Exam 5 participants, individuals in this 

analysis were slightly younger, had a higher BMI and a higher proportion of Asian and Hispanic 

participants. There were no differences based on sex. Approximately 33.4% of the study sample 

met criteria for moderate or more severe SDB (AHI>15) and 9.7% met the definition of SAS. 

The median AHI, %Sat<90, and ESS were 9.0, 0.65, and 5.0, respectively. The prevalence of the 

APOE-ε4 allele was 26.8%.  

 Individuals with SDB were more likely to be male, older, obese, and less physically 

active relative to those without SDB, P<0.01 (Table 1). SDB groups also varied by race, P<0.10, 

and education level P<0.05. Higher education was associated with better cognition scores across 

all domains (P<0.01). In unadjusted analyses, scores for CASI and DST Forward and Backward 

did not differ by SDB classification (Table 2). The unadjusted DSC score was higher among 

individuals without SDB compared to those with SDB, P<0.01. 

 Higher levels of overnight hypoxemia and daytime sleepiness were associated with small 

estimated decrements in poorer working memoryattention and concentration (DST Forward) 

performance after adjustment for demographic and education status (P’s <0.05) (Table 3).  

Associations were slightly attenuated in fully adjusted analyses but remained statistically 

significant. Similarly, SAS and higher sleepiness scores were associated with small decements in 

Page 40 of 60



  

9 

 

attention and poorer processing speed (DSC) after adjustment for demographic and education 

status (P’s <0.05). The association persisted in fully adjusted models. No other associations 

between sleep parameters and cognitive function were significant.  

In sensitivity analyses, we further adjusted for benzodiazepine use and depressive 

symptoms, and all associations remained and parameter estimates were similar except for the 

association between daytime sleepiness and DST Forward. Adjusting for depressive symptoms 

attenuated the association between daytime sleepiness and DST Forward (β=-0.09 (0.06)).   

Effect Modification (Figure 1) 

APOE-ε4 modified the association between %Sat<90% and DST Forward and between 

the ESS and DSC (Pinteraction <0.05). In stratified analyses, among those with the ε4 allele, more 

severe overnight hypoxemia was associated with a poorer DST Forward score (β=-0.37 (0.12), 

P<0.01). In contrast, no association was observed between hypoxemia and DST Forward scores 

among those individuals without the risk allele (β=-0.03 (0.08), P=0.68). Additionally, the 

association between sleepiness scores and poorer DSC scores were twice as strong in individuals 

with the presence of APOE-ε4 genotype as opposed to those without, β=-2.40 (0.63), P<0.01, 

β=-0.91 (0.43), P<0.05, respectively. There were no interactions between AHI or SAS and 

APOE-ε4.  

Discussion 

Among an ethnically and socioeconomically diverse population of middle-age to older 

individuals, we found that sleep-related hypoxemia and daytime sleepiness were cross-

sectionally associated with cognitive dysfunction, particularly tasks related to processing speed, 

attention and concentration, but not with a test of global cognitive function or working memory. 

The AHI was not associated with any cognitive tests in this study. Moreover, we found evidence 

that the associations between SDB and cognition varied by APOE-ε4. Specifically, we found that 

Page 41 of 60



  

10 

 

APOE-ε4 carriers showed poorer attention and concentration as hypoxemia increased. Similarly, 

they showed poorer attention and slower processing speed as daytime sleepiness increased. 

Overall, these results suggest: a) overnight hypoxemia and self-reported sleepiness are more 

closely associated with cognitive functionon than the , with little evidence that AHI is associated 

with cognitive function; b) associations with sleepiness persisted even after adjusting for sleep 

duration and sleep efficiency, suggesting that sleepiness may be a marker of SDB-related 

cognitive vulnerability;  c) the most sensitive of our measures of cognitive impairment was the 

DST Forward, a measure of short term memoryattention and concentration; d) a genetic 

vulnerability to AD modified the key associations.  

Prior studies have been inconsistent regarding the association between sleep-disordered 

breathing and cognitive function, perhaps due to population heterogeneity (with underlying 

differences in susceptibility to SDB-related changes in cognitive function), level of severity of 

SDB among samples studied, and differences in methods and measures employed, including the 

range of cognitive assessments administered and cognitive domains assessed. Our findings are 

generally consistent with prior research that has reported that the severity of hypoxemia was 

related to poorer cognitive performance.13,14,20,22,34,44  Hypoxemia is thought to contribute to 

neurologic dysfunction through several pathways, including triggering of cellular events leading 

to apoptosis of hippocampal cells.45  Cerebral vascular damage also may result from hypoxemia 

related chemoreflex activation, sympathetic vasoconstriction, and nocturnal blood pressure 

surges.46,47 Intermittent hypoxemia influences both oxidative stress and inflammation, which can 

result in cognitive deficits by inducing neuronal cell loss within specific regions of the brain that 

lead to deficits.48   

We also observed significant associations between daytime sleepiness and cognition, and 

showed that these associations persisted after adjusting for sleep duration and sleep efficiency. 
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These findings are consistent with the research of Cohen-Zion and colleagues, who found that 

increases in daytime sleepiness were associated with decreased cognitive performance.17 

Similarly, among two separate adult populations, excessive daytime sleepiness was also 

associated with increased risk of cognitive impairment; and the authors suggest that daytime 

sleepiness could be a marker for cognitive decline.49,50 Reduced alertness resulting from 

sleepiness has been shown to decrease brain activity and function.51   Although cognitive deficits 

may be directly due to sleepiness (and reduced vigilance), sleepiness also may provide an 

integrative measure of the effects of multiple sleep disrupting exposures that may contribute to 

cognitive decline, serving as a marker that identifies those most vulnerable to SDB.52 Although 

sleepiness is not specific to SDB, our associations persisted after adjusting for both sleep 

duration and sleep efficiency, suggesting that insufficient sleep was not an explanation for our 

results. Results were slightly attenuated when adjusting for depressive symptoms, and 

underscore the possibility that altered mood also may be a marker or mediator of cognitive 

changes occurring with SDB. Sleep disturbance, fatigue and difficulty concentrating are cardinal 

features of depression.53  

Notably, the AHI was not associated with none of the cognitive outcomes. Although the 

AHI is a standard clinical metric, there is increasing recognition that this measure has a number 

of limitations and does not provide specific information regarding physiological disturbances 

(e.g., may reflect different degrees of arousal and patterns of breathing and sleep disruptions). 

Recent studies of cognitive function in children also have shown no associations between the 

AHI and a comprehensive and sensitive cognitive battery, but showed associations between 

sleepiness, or Sleep Apnea Syndrome (defined by a mildly elevated AHI and elevated ESS 

score) and cognition.54 Further, current definitions of AHI allow for significant variation in level 

of hypoxemia across patients, and a 3 or 4% decrease in oxygen desaturation can result in levels 
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of oxyhemoglobin that are still well within normal ranges and not indicative of hypoxemia. Our 

results suggest the clinical assessment of sleepiness may be useful in identifying patients at 

increased risk for cognitive deficits associated with SDB.  

The MESA cognitive battery was chosen to provide an broad assessment of cognitive 

performance across different several domains. We  found that our sleep measures were mostly 

related to tests of attention, concentration, and short-term memory, cognitive domains also 

observed to be impacted in other studies of patients with SDB.13,15,19  Of all tests, the DST 

Forward was most consistently associated with sleepiness and hypoxemia. In contrast, a more 

cognitively challenging test, Digit Span Backwards, was not.  One explanation for this seemingly 

counter intuitive finding is that tasks that are more demanding may result in greater cognitive 

activation, and help recruit compensatory mechanisms that overcome attentional deficits.55 

Neuroimaging studies provide evidence for such compensatory cognitive activation, particularly 

in the middle-age to older adulthood age-range,56 and compensatory cerebral activation during 

cognitive processing has been documented in APOE-ε4 carriers.57  Since DST Backward is more 

difficult than DST Forward, participants may have increased their effort in the conduct of DST 

Backward. 

However, it is also important to note that DST Backward and DST Forward measure 

overlapping but different cognitive functions.58 DST Backward is well documented to capture 

cognitive control and executive functioning processes, while DST Forward is considered to be a 

measure of attention and short-term memory that does not place high demands on executive 

processes such as sequencing and planning.  While some studies have observed a negative 

impact of SDB on a broad range of executive function tasks, including both DST Forward and 

DST Backward,59 similar to our own observation, others find a negative impact on DST Forward 
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but not DST Backward suggesting SDB impacts attention and short-term memory.60  Also, 

among e4 carriers, SDB is most consistently observed to negatively impact memory tasks.28,61 

It is noteworthy that associations were not observed between sleep measures and a test of 

global overall cognitive measure of cognition, the CASI, which may lack sufficient sensitivity. 

Characteristics of our cohort, a middle-aged, male and female, and community sample may have 

attenuated the associations.  It is also possible that residual confounding was present in 

associations with the CASI where cultural differences may be involved despite our adjustments 

in models. We did not observe an association of memory function and hypoxemia on the CASI, 

but the memory component only consists of recall of three words, which may not have been 

sufficiently sensitive to hypoxemia-associated memory impairment. Further, unlike older, clinic 

samples where patients are often concerned about cognitive function, our sample was not 

selective for either sleep related health or cognitive problems.  

There is growing recognition that there is large population variability in susceptibility to 

various exposures, which has stimulated the emergence of “precision medicine.” An important 

finding of our work is the observed effect modification by APOE-ε4. Notably, APOE-ε4 carriers 

had stronger associations between hypoxemia and attention/concentration as well as between 

sleepiness and processing speed.  Our findings are consistent with several studies.28,34,62,63 Data 

from the Wisconsin Sleep Cohort, showed an association between AHI and memory and 

executive function in carriers of the APOE-ε4 allele;, however other measures of SDB were not 

assessed.28 In a sample of older women, AHI, central apnea index, and oxygen saturation nadir 

less than 90% were associated with a higher risk of cognitive impairment among APOE-ε4 

carriers.34  In our diverse cohort, we found that those with the risk allele appeared more 

vulnerable to the influence of overnight hypoxemia and sleepiness on attention, memory and 

processing speed than those without a risk allele. These associations are plausible given that 

Page 45 of 60



  

14 

 

SDB-related hypoxemia and oxidative stress most negatively impacts brain function in 

individuals genetically susceptible to synaptic degeneration.   

It is noteworthy that other studies have observed lower performance on the Digit Span 

and DSC Tests to be predictive of cognitive decline and conversion to Mild Cognitive 

Impairment (MCI), as well as conversion from MCI to Alzheimer’s Disease. Kurt and 

colleagues, found that lower digit span performance in older adults with subjective memory 

complaints predicted future neuropsychological test performance indicative of MCI.64  In a larger 

cohort of 148 elderly adults with MCI, performance on the DSC was one of the strongest 

predictors of time to convert to Alzheimer’s Disease.65 MCI encompasses a range of cognitive 

deficits, some of which may present before others.66 SDB-associated performance deficits in 

digit span measures of attention, speed of processing and working memory may be the first to 

capture subtle cognitive impairments that are indicative of subsequent MCI and dementia. While 

longitudinal studies are required to more fully investigate this possibility, the clinical 

implications are substantial. Along with APOE-ε4 risk  allele status, MCI status is one of the 

most robust risk factors for the development of dementia.  

Given the current lack of effective treatments for AD and dementia there is a significant 

focus on secondary prevention, with recent research supporting the value in targeting multiple  

identifying modifiable risk factors.67–69 . Although each risk factor may individually have small 

effect, indices that include multiple behavioral, lifestyle and somatic risk factors together may 

account for as much as 50% of the excessive risk for dementia.68,69   The association of SDB 

with dementia,13,14 and poorer performance on cognitive function measures, suggests that SDB 

represents an additional modifiable risk factor to reduce the risk of conversion from typical aging 

to MCI, and from MCI to dementia. Although our average effect estimates for SDB indices were 
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small, they were significant even after adjustment for traditional risk factors such as age, 

hypertension and diabetes.  

 

This study contributes to the literature in several additional ways. We analyzed indices of 

SDB with three well-standardized neuropsychological tests. Standardized polysomnography 

allowed us to adjust for objective measures of sleep duration and sleep efficiency.  Our study 

cohort was ethnically and racially diverse, providing greater generalizability than prior studies. 

Genetic data allowed us to test for effect modification. Despite these strengths, our study also has 

limitations. Although we included several sleep measures, these were derived from a single night 

of PSG, which does not capture variation over time. It is possible that duration of SDB and age 

of onset are important factors in influencing cognitive function. Our analyses were cross-

sectional which does not allow us to infer causality. Lastly, it is possible that more sensitive 

cognitive tests would have yielded different results. Given the correlation among exposures and 

outcomes, we did not adjust for multiple comparisons.  

Conclusion 

Cognitive impairment is highly prevalent among elderly populations, and is associated 

with increased disability, neuropsychiatric symptoms and health care costs.70–72 Our results 

suggest that more severe overnight hypoxemia and sleepiness may be related to poorer cognitive 

function, especially attention, concentration, and process speed in middle-aged to older adults, 

and that the risk is greater among carriers of the APOE-ε4 alleles, a known risk factor for 

Alzheimer’s disease. With use of this type of information, future risk stratification may help to 

identify individuals at increased risk for SDB-related cognitive deficits and target those 

individuals for studies evaluating the impact of treatment or prevention. 
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Table 1. Study Population Characteristics by Sleep-Disordered Breathing (N=1752) 

 Sleep-Disordered Breathing (AHI>15)  

Characteristic Yes  
(n=585) 

Mean (SD) or No. 
(%) 

No 
(n=1167) 

Mean (SD) or No. (%) 

P-
Value* 

Age, y 68.6 (8.8) 67.9 (9.2) 0.11 

Male 356 (60.8) 440 (37.7) <0.001 

Education   0.05 

   <HS 94 (16.1) 156 (13.4)  

   HS or GED 86 (14.7) 203 (17.4)  

   Some College 156 (26.7) 262 (22.5)  

   >College 249 (42.6) 543 (46.6)  

Income    

   <$25,000 175 (30.5) 289 (25.4) 0.16 

   $25-$49,999 144 (25.1) 309 (27.1)  

   $50-$74,999 95 (16.6) 205 (18.0)  

   >$75,000 159 (27.7) 336 (29.5)  

Race/Ethnicity   0.10 

    Non-Hispanic White 197 (33.7) 453 (38.8)  

    Chinese 79 (13.5) 131 (11.2)  

    African American 152 (26.0) 309 (26.5)  

    Hispanic 157 (26.8) 274 (23.5)  

Body Mass Index 30.5 (5.8) 27.6 (5.1) <0.001 

COPD 11 (1.9) 23 (2.0) 0.90 

Depressive Symptoms 8.0 (7.1) 8.1 (7.8) 0.83 

Antidepressant use 3 (0.5) 15 (1.3) 0.13 

Benzodiazepine use 14 (2.4) 66 (5.6) 0.002 

Current Smoker 32 (5.5) 87 (7.5) 0.12 

Physical Activity, h per day 9.0 (5.9) 9.6 (6.1) 0.05 
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Total Sleep Timea, min 392.5 (75.3) 387.7 (83.7) 0.23 

Sleep Efficiencya 89.9 (3.6) 89.8 (3.8) 0.65 

% REMb 16.6 (6.9) 19.1 (6.1) <0.001 

% Slow Wave Sleepb 8.4 (8.2) 10.9 (9.2) <0.001 

AHI, median (IQR) b  32.2 (19.4-41.2) 5.6 (2.0-9.0) <0.001 

Arousal Indexb 29.5 (13.2) 18.4 (8.9) <0.001 

% Time Oxyhemoglobin 

Saturation <90%b, median (IQR) 

8.2 (1.6-9.4) 1.6 (0.0-0.97) <0.001 

Sleep Apnea Syndrome 97 (16.8) 71 (6.2) <0.001 

Epworth Sleepiness Scale 6.4 (4.3) 5.8 (3.9) 0.01 

APOE-ε4 allele 150 (26.7) 297 (26.8)  

 IQR=Interquartile range; *chi-square or ANOVA tests for categorical or continuous variables (respectively); 
aMeasures are based on actigraphy;  bMeasures are based on in-home polysomnography. 
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Table 2. Unadjusted Values (Mean, SD) of Cognitive Function Tests by Sleep-Disordered 

Breathing  

Cognitive Function SDB No SDB 

CASIc 87.6 (8.2) 88.3 (8.4) 

DSCa 49.8 (18.2) 53.0 (18.7) 

Digit Span Forward 9.5 (2.8) 9.6 (2.8) 

Digit Span Backwardc 5.5 (2.3) 5.7 (2.4) 

 CASI-Cognitive Abilities Screening Instrument (version 2); DSC-Digit Symbol Coding; aP<0.01, bP<0.05, cP<0.10  
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Table 3. Regression Analysis of Sleep-Disordered Breathing Indices and Cognitive Function, N=1752. 

 CASI DSC DST Forward DST Backward 

 Model 

1 

Model 

2 

Model  

3 

Model  

4 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

AHI 0.0004 
(0.0023) 

0.0004 
(0.0023) 

0.0005 
(0.0023) 

0.0004 
(0.0023) 

-0.140 
(0.354) 

-0.016 
(0.353) 

-0.035 
(0.354) 

0.089 
(0.355) 

0.020 
(0.064) 

0.032 
(0.065) 

0.041 
(0.066) 

0.064 
(0.066) 

-0.003 
(0.053) 

0.017 
(0.053) 

0.012 
(0.054) 

0.015 
(0.054) 

% Saturation 
<90% 

0.004 
(0.002)c 

0.004 
(0.002)c 

0.004 
(0.002)c   

0.004 
(0.002)c 

-0.693 
(0.344) 

-0.447 
(0.341) 

-0.428 
(0.341) 

-0.295 
(0.341) 

-0.151 

(0.063)
b
 

-0.137 

(0.063)
 

b
 

-0.138 

(0.063)
b
 

-0.123 

(0.063)
b
 

-0.027 
(0.051) 

-0.014 
(0.052) 

-0.011 
(0.052) 

-0.007 
(0.052) 

SAS 0.001 
(0.002) 

0.001 
(0.002) 

0.001 
(0.002) 

------ -0.903 

(0.345)
a
 

-0.698 

(0.344)
b
 

-0.694 

(0.346)
b
 

------ -0.066 
(0.062) 

-0.056 
(0.064) 

-0.062 
(0.064) 

  

----- -0.011 
(0.052) 

-0.004 
(0.052) 

-0.002  
(0.052) 

------ 

ESS 0.0005 
(0.0022) 

0.0001 
(0.0023) 

0.0003 
(0.0023)  

------ -1.55 

(0.345)
a
 

-1.43 

(0.344)
a
 

-1.42 

(0.346)
a
 

------ -0.148 

(0.063)
b
 

-0.127 

(0.064)
b
 

-0.132 

(0.064)
b
 

----- -0.035 
(0.052) 

-0.019 
(0.052) 

-0.014 
(0.053) 

------ 

Model 1: Adjusted for age, sex, race, education level 
Model 2: Model 1 + age, sex, race, education level, diabetes, hypertension, smoking 
Model 3: Model 2 + sleep duration, sleep efficiency 
Model 4: Model 3 + sleepiness 
a
P<0.01, bP<0.05, cP<0.10 

Estimates are standardized 
Shown are beta coefficients and standard errors 
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Figure 1. 

A.  

 

B.  

 

 

 

 

Figure 1illustrates forest plots showing the association between indices of SDB and cognitive tests by APOε4 risk 

allele. The data presented are the associations between sleep indices and cognitive outcome stratified by APOε4. (A) 

% Saturation <90% and Digit Span Forward Test by APOε4. (B) Epworth Sleepiness Scale and Digit Symbol 

Coding Test by APOε4.*P<0.05                                                    
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