Yik (Jeremy) Chan, PhD
iCare Postdoctoral Researcher
Respiratory Cellular and Molecular Biology
Woolcock Institute of Medical Research

Contact: yik.chan@sydney.edu.au

Is your research clinical, basic science or translational?
Basic Science

Tell us about your research?
Smoking is long thought to be the only cause of COPD, but many COPD patients are non-smokers. Pollution, and in particular particulate matter (PM) exposure, is considered as a major risk factor for non-smoking COPD. To date animal models have used acute high dose exposure. My research aims to create a more realistic long term low dose PM exposure model. The next step is to identify possibly pathways how PM exposure might lead to COPD in adulthood.

Where do you see yourself in 5 years?
Research, academia and teaching. I want to establish a research group that focuses on studying various possible causes of lung fibrosis.

What do you find is the major benefit of RSF Assembly Membership?
As an early career researcher, the RSF assembly will provide me opportunity to network with top physiologist. More people knowing my work can help establish future collaborations.

If you or someone you know would like to be featured as an ATS RSF ECP please email Katrina Tonga (katrina.tonga@sydney.edu.au) or Louise Organ (Louise.Organ@nottingham.ac.uk)
Impact of traffic related air pollutant exposure on lung inflammation and mitochondrial wellbeing in mouse lungs

It is well accepted that traffic related air pollution (TRAP) is detrimental for respiratory health, causing inflammation. One of the core components of TRAP is particulate matter (PM). However, there is no consensus in animal models, and most models used high dose of PM acutely which might not be physiologically relevant.

Objective: In this study, we aimed to develop a mouse model of subchronic low dose PM exposure representing similar environmental exposure as the humans.

Methods: Balb/c mice (7 weeks old, male) were exposed to saline or roadside PM10 (<10 micron; particle removed from Teflon filter) 1μg or 5μg daily for three weeks (n=10). Inflammatory response was assessed in bronchoalveolar lavage (BAL), and mitophagy markers (to measure recycling mechanism of mitochondria) were measured by Western blotting (n=8).

Results: Exposure to 1μg of PM10 did not affect inflammatory and mitochondrial markers in the lung, while 5μg of PM10 exposure increased lymphocytes and macrophages in BAL. Inflammatory cytokine IL-1β was increased and mediated through upstream NLRP3 in mice exposed to 5μg PM10 exposure (P<0.05). IL-6 protein level was not changed. PM10 reduced mitochondrial antioxidant manganese superoxide and mitochondrial fusion marker OPA-1 and increased mitochondrial fission marker Drp-1(P<0.05). Autophagy marker LC3-II and AMPK were reduced with increased apoptosis marker caspase-3 (P<0.05). Fibrotic markers fibronectin, TGF-β1 and Collagen-III were not changed by PM10 exposure at either 1μg or 5μg.

Conclusion: Low level of PM10 exposure can elicit inflammation and alter mitochondrial fission, fusion and autophagy in the subchronic setting. This model can be used to study other TRAP exposure related conditions, such as asthma.

Figure 1. This figure shows that a 5μg PM exposure for 3 weeks can already elicit inflammatory response in Balb/c mice. This include increase in number of lymphocytes, macrophages in BALF. This is accompanied by increased IL-1β and NLRP3 (inflammasome) protein level. Results are expressed as mean ± SEM, n = 8. *p<0.05, **p<0.01, compared with SHAM; #p<0.05, ##p<0.01, compared with PM10 (1μg). PM10: particulate matter exposure.

Yik (Jeremy) Chan, PhD
iCare Postdoctoral Researcher
Respiratory Cellular and Molecular Biology
Woolcock Institute of Medical Research

ATS 2018 Highlights
Respiratory Structure and Function Early Career Professionals

Please follow us on Twitter @ATS_RSF and like our Facebook page!

If you or someone you know would like to be featured as an ATS RSF ECP please email Katrina Tonga (katrina.tonga@sydney.edu.au) or Louise Organ (Louise.Organ@nottingham.ac.uk)