Immunity to COVID-19

Shane Crotty

UCSD School of Medicine
Dept. of Medicine

La Jolla Institute
FOR IMMUNOLOGY

LA JOLLA, CA 92037, USA

AFFILIATIONS
1 Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
2 Department of Microbiology and Immunology, University of North Carolina School of Medicine, USA
3 Department of Microbiology, Yale School of Medicine at Mount Sinai, New York, New York
4 indicates equal contributions
Correspondence: alice@uci.edu (A.S.) and shane@uci.edu (S.C.)
Lead Contact: alice@uci.edu (A.S.)

GRAPHICAL ABSTRACT

SUMMARY
Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibrating pandemic control measures. Using HLA class I and II presented peptide "megapools", circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ~70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike and N proteins each accounted for 11-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ~40-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating common cold coronaviruses and SARS-CoV-2.
Major knowledge gaps in understanding immunity to SARS-CoV-2

- How much of an adaptive immune response is there to COVID-19?
 - Important for vaccine design
 - Important for predictions of herd immunity and future social distancing policies

- How long does immunological memory to COVID-19 last?

- What kind of immunity is important against COVID-19?
 - Important for vaccine design
Do people develop immunity to COVID-19?

- COVID-19 is an acute infection that resolves/cures in most humans.
- What kind of immunity is important against COVID-19?

Antibodies (from B cells)

CD4 T cells (Helpers)

CD8 T cells (Killers)
Study of immune responses of ‘average’ COVID-19 cases

SARS-CoV-2 → viral antigens

IgG → IgA

CD4 → S, M, N, nsps

CD8
Study of immune responses of ‘average’ COVID-19 cases

To establish a benchmark of COVID-19 T cell and antibody responses
Good news!

Antiviral immunity that matches expectations
What about immunity to “common cold” coronaviruses?

Is there potential for any cross protection to SARS-CoV-2 from exposure to “common cold” coronaviruses?
SARS2 reactive T cells in unexposed, normal healthy donors

Blood samples collected 2015-2018
What's next?

❖ Understanding SARS-CoV-2 reactivity seen in unexposed donors
❖ Working with vaccine developers
❖ Studying the immune responses in acute COVID-19

❖ Studying the immune responses across the spectrum of disease severity
 ❖ What types of immune responses are protective?
 ❖ What types of immune responses are potentially pathogenic?
THE TEAM

Alba Grifoni Daniela Weiskopf Shane Crotty Alessandro Sette

Sydney I. Ramirez, Jose Mateus, Carolyn Moderbacher, Jennifer M. Dan, Aaron Sutherland, Daniel Marrama, April Frazier, Jason A. Greenbaum

Bjoern Peters, Ricardo Antunes, Esther Yu, Marshall Lammers, Lorenzo Quiambao, Paul Rubiro, Gina Levi, Brittany Schwan
CD4\(^+\) T cells respond to multiple SARS-CoV-2 antigens
Antibody responses to SARS-CoV-2 Spike protein

![Graphs showing antibody responses to SARS-CoV-2 Spike protein](image-url)
CD4+ T cell responses to SARS-CoV-2
CD8⁺ T cell responses to SARS-CoV-2
Cross reactive CD4⁺ T cells to SARS-CoV-2 after exposure to “common cold” HCoV.
Cytokine responses of immune cells to COVID-19

TH1 cytokine response
The main focus of current SARS-CoV-2 vaccine candidates

SARS-CoV-2 Spike Protein

Wrapp et al., 2020 Science
Coronaviruses (CoV)

- Enveloped, single-stranded (+) RNA viruses with large genome (20-30 kb)
 - Structural proteins: Spike (S), Membrane (M), Envelope (E), Nucleocapsid (N)
 - Non-structural proteins (nsps)
 - Accessory proteins

Inside: RNA, N, nsps, accessory proteins

Outside: S, M, E
CD8⁺ T cells respond to multiple SARS-CoV-2 antigens
T cell responses correlate with viral protein abundance

SARS-CoV-2

CD4$^+$ response

CD8$^+$ response
Diseases caused by coronaviruses

• Cause disease in mammals and birds
 • 4 groups (alpha-delta)
 • alpha and beta CoV cause disease in humans

• Cause a wide range of illness:
 • upper and lower respiratory tract infections
 • asymptomatic disease to severe pneumonia
 • acute respiratory distress syndrome (ARDS)
 • COVID-19
 • other sites of disease outside lungs
Human Coronaviruses (HCoV)

<table>
<thead>
<tr>
<th>Virus</th>
<th>Alpha/Beta</th>
<th>Year of Discovery</th>
<th>Common cold</th>
<th>Severe disease</th>
<th>Syndrome or illness</th>
<th>Vaccine?</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC43</td>
<td>beta</td>
<td>1960</td>
<td>✓</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>229E</td>
<td>alpha</td>
<td>1962</td>
<td>✓</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>SARS</td>
<td>beta</td>
<td>2003</td>
<td></td>
<td>✓</td>
<td>SARS</td>
<td>No</td>
</tr>
<tr>
<td>NL63</td>
<td>alpha</td>
<td>2004</td>
<td></td>
<td>✓</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>HKU1</td>
<td>beta</td>
<td>2005</td>
<td></td>
<td>✓</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>MERS</td>
<td>beta</td>
<td>2012</td>
<td></td>
<td>✓</td>
<td>MERS</td>
<td>No</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>beta</td>
<td>2019</td>
<td></td>
<td>✓</td>
<td>COVID-19</td>
<td>No</td>
</tr>
</tbody>
</table>