

# Hemodynamics

Patricia Kritek, MD, EdM Morgan Soffler, MD

## Learning Objectives

- Consider contributing causes of shock using physiologic principles
- Describe bedside tools available for diagnosis of shock
- Delineate the safety issues around PA catheters
- Analyze PA catheter data



Mr. J is a 76-year-old man with COPD and recent worsened dyspnea on exertion found to have ischemic cardiomyopathy (EF 25-30%). He underwent 3V CABG two days ago. His post-op course has been complicated by aspiration and delirium.

Earlier today he was intubated for worsening respiratory distress. He is now hypotensive.



T 99.6°F, HR 123, BP 75/40, RR 20, UO <10cc/hr SpO<sub>2</sub> 93% on AC-VC FiO<sub>2</sub> 0.6



Lactate 6 pH 7.18/45/80

#### **Breakout!**

How would you evaluate shock in this patient?

What bedside tools do you have to help guide your diagnostics and management?

What are the limitations of these tools?



## Approach shock physiologically.



Afib with RVR

## Regulation of Cardiac Output



# What are dynamic measures of volume responsiveness?

Shift the venous return curve to the RIGHT....

Increase mean systemic filling pressure with venous volume

- Passive leg raise test
- Empiric bolus challenge

Change in intrathoracic pressure → in RAP (respiration)

- Pulse pressure variation
- IVC collapsibility
- IVC distensibility



## Assessing efficacy of empiric fluid challenge





## **PA Catheter Insertion**





### PA Catheter Insertion





## PA Catheter – Chest Radiograph



## PA Catheters - Safety Issues

- Insert under sterile conditions
- Test the balloon before insertion
- Monitor for arrhythmias when floating
- Avoid excessively insertion to prevent coiling or over-wedge
  - ~30cm to RV, ~45cm to PA, ~55-cm PAOP
- Obtain CXR
- Never leave PAC balloon inflated



#### Mr. J's PA Catheter Numbers

| Parameter                                   | Data                     |
|---------------------------------------------|--------------------------|
| Cardiac output (CO)                         | 3.7 L/minute             |
| Cardiac index (CI)                          | 2.0 L/min/m <sup>2</sup> |
| Right atrial pressure (RAP)                 | 18 mmHg                  |
| Right ventricular pressure (RVP)            | 36/12 mmHg               |
| Mean pulmonary artery pressure (mPAP)       | 32 mmHg                  |
| Pulmonary artery occlusion pressure (PAOP)  | 24 mmHg                  |
| Mixed venous saturation (SVO <sub>2</sub> ) | 58%                      |
| Mean arterial pressure (MAP)                | 58 mmHg                  |



#### **Breakout!**

Interpret the PA catheter results

Propose a management plan



| Variable         | Normal Value                      | Measured or Derived? |
|------------------|-----------------------------------|----------------------|
| СО               | 4-8 L/min                         | Measured and Derived |
| CI               | 2.5-4 L/min                       | Measured             |
| RAP              | 2-6 mmHg                          | Measured             |
| RVP              | 15-25/0-8 mmHg                    | Measured             |
| PA               | 15-25 / 8-15 mmHg                 | Measured             |
| PAOP             | 8-12 mmHg                         | Measured             |
| SVO <sub>2</sub> | 60-70%                            | Measured             |
| SVR              | 800-1200 dyne-sec/cm <sup>5</sup> | Derived              |
| PVR              | <250 dyne-sec/cm⁵                 | Derived              |



#### Pressure Measurements



## Right Atrial Pressure





## Right Ventricular Pressure





## Pulmonary Artery Pressure



Diastolic pressure rise

Slope of diastole

Dicrotic notch



## Pulmonary Artery Occlusion Pressure





## **Respiratory Variation**



## Measuring Cardiac Output

#### **Fick Equation**

 $VO_2 = Q \times Hgb \times 1.36 \times (SaO_2-SvO_2)$ 

Less reliable in patients with pulm HTN, heart failure, abnormal body habitus

#### **Thermodilution**



Less reliable in patients with TR or intracardiac shunting

#### Other resources

- https://www.thoracic.org/professionals/clinic al-resources/video-lecture-series/criticalcare/proper-insertion-and-use-of-apulmonary-artery-catheter.php
- https://www.atsjournals.org/doi/full/10.1164 /rccm.201402-0269PP

#### THANK YOU!!!

Questions?

