

## Alex Cypro, MD UCSD Internal Medicine PGY-3

Case Presentation 1





67 yo male smoker presented to the emergency room with shortness of breath.

His wife tested positive for COVID-19 five days ago and since then he has developed progressive dyspnea accompanied by fevers and a dry cough.

On auscultation he has defuse bilateral crackles.



Initial SpO2 63%

He was placed on a non-rebreather mask at 15L/min with improvement in SpO2 to low 90s Intermittent desaturations with positional changes (SpO2 in the 80s) The patient continued to feel short of breath with respiratory rate 28-34. He reported feeling weak and could not speak in full sentences.

Given the patient's deteriorating respiratory status, the decision was made to intubate.

What is the most important piece of information you want to know about the patient when choosing his ventilator settings?

- A. Initial ABG
- B. Chest CT scan findings
- C. Height
- D. Renal function
- E. Liver function

What is the most important piece of information you want to know about the patient when choosing his ventilator settings?

- A. Initial ABG
- B. Chest CT scan findings
- C. Height
- D. Renal function
- E. Liver function

This patient has developed ARDS and should be put on "lung-protective" ventilation strategy: tidal volume is kept low at 6 ml/kg of <u>ideal</u> body weight. Initial ventilator settings:

Tidal Volume:400 mLSet Respiratory Rate:20Observed Respiratory Rate:26PEEP:10 cm H20FiO2:100%

What changes to the ventilator would you consider making at this time ?

- A. Decrease the PEEP
- B. Increase the respiratory rate
- C. Increase the tidal volume
- D. Decrease the FiO2
- E. No changes

| BLOOD GAS         |            |   |
|-------------------|------------|---|
| FIO2              | 100.0      |   |
| Temp              | 38.4       |   |
| Art Site          | Arterial * |   |
| pH, Art (T)       | 7.36       |   |
| pCO2, Art (T)     | 46         |   |
| pO2, Art (T)      | 196        | * |
| HCO3, Art         | 25         |   |
| BE, Art           | 0.0        |   |
| O2 Sat, Art (Est) | 99.6       |   |

| BLOOD GAS         |            |   |
|-------------------|------------|---|
| FIO2              | 100.0      |   |
| Temp              | 38.4       |   |
| Art Site          | Arterial * |   |
| pH, Art (T)       | 7.36       |   |
| pCO2, Art (T)     | 46         |   |
| pO2, Art (T)      | 196        | * |
| HCO3, Art         | 25         |   |
| BE, Art           | 0.0        |   |
| O2 Sat, Art (Est) | 99.6       |   |



NIH NHLBI ARDS Clinical Network Mechanical Ventilation Protocol Summary

#### OXYGENATION GOAL: PaO<sub>2</sub> 55-80 mmHg or SpO<sub>2</sub> 88-95%

Use a minimum PEEP of 5 cm  $H_2O$ . Consider use of incremental  $FiO_2/PEEP$  combinations such as shown below (not required) to achieve goal.

#### Lower PEEP/higher FiO2

| FiO <sub>2</sub> | 0.3 | 0.4 | 0.4 | 0.5 | 0.5 | 0.6 | 0.7 | 0.7 |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| PEEP             | 5   | 5   | 8   | 8   | 10  | 10  | 10  | 12  |

## A. Decrease the PEEP

- B. Increase the respiratory rate
- C. Increase the tidal volume

## **D. Decrease the FiO2**

E. No changes

| FiO <sub>2</sub> | 0.7 | 0.8 | 0.9 | 0.9 | 0.9 | 1.0   |
|------------------|-----|-----|-----|-----|-----|-------|
| PEEP             | 14  | 14  | 14  | 16  | 18  | 18-24 |

#### Higher PEEP/lower FiO2

| FiO <sub>2</sub> | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.5 |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| PEEP             | 5   | 8   | 10  | 12  | 14  | 14  | 16  | 16  |

| FiO <sub>2</sub> | 0.5 | 0.5-0.8 | 0.8 | 0.9 | 1.0 | 1.0 |
|------------------|-----|---------|-----|-----|-----|-----|
| PEEP             | 18  | 20      | 22  | 22  | 22  | 24  |

The patient's condition worsens overnight. He now requires PEEP of 16 mm  $H_2O$  and FiO<sub>2</sub> of 0.5. CXR demonstrates increased diffuse, bilateral infiltrates.

His sedation requirements are unchanged (on propofol 20 mcg/kg/min and fentanyl 50 mcg/mg/min) but he developed hypotension and is requiring norepinephrine at 6 mcg/min.

What about the patient's pulmonary findings or ventilator settings may be contributing to the hypotension?

- A. Low tidal volumes
- B. Low FiO<sub>2</sub>
- C. Increased pulmonary edema
- D. High PEEP
- E. Sedatives

What about the patient's pulmonary findings or ventilator settings may be contributing to the hypotension?

- A. Low tidal volumes
- B. Low FiO2
- C. Increased pulmonary edema
- D. High PEEP
- **E. Sedatives**

High levels of PEEP (>  $15 H_2O$ ) can impair venous return and decrease cardiac output and blood pressure. While the PaO<sub>2</sub> improved on higher PEEP, a drop in cardiac output will impair oxygen delivery to tissues.

Propofol commonly causes hypotension through negative effects on inotropy as well as vasodilation. The ICU team is unable to decrease the patient's PEEP and the patient continues to be hypoxemic despite a net negative fluid balance. He has been started on empiric antibiotic therapy due to concern of a superinfection.

What is the next best step in managing this patient's hypoxemia?

- A. Inhaled nitric oxide (pulmonary vasodilator)
- B. Prone positioning
- C. Extracorporeal membrane oxygenation
- D. Permissive hypercapnia
- E. High frequency oscillatory ventilation

| BLOOD GAS         |            |   |
|-------------------|------------|---|
| FIO2              | 50.0       |   |
| Temp              | 37.0       |   |
| Art Site          | Arterial * |   |
| pH, Art (T)       | 7.46       |   |
| pCO2, Art (T)     | 44         |   |
| pO2, Art (T)      | 57         | - |
| HCO3, Art         | 30         | * |
| BE, Art           | 6.6        | * |
| O2 Sat, Art (Est) | 90.8       |   |



A. Inhaled nitric oxide (pulmonary vasodilator)

- **B.** Prone positioning
- C. Extracorporeal membrane oxygenation
- D. Permissive hypercapnia
- E. High frequency oscillatory ventilation

| BLOOD GAS     |          |   |          |   |            |   |
|---------------|----------|---|----------|---|------------|---|
| FIO2          | 50.0     |   | 40.0 *   |   | 40.0       |   |
| Temp          | 37.4     |   | 37.4     |   | 37.6       |   |
| Art Site      | Arterial |   | Arterial |   | Arterial * |   |
| pH, Art (T)   | 7.36     |   | 7.41     |   | 7.42       |   |
| pCO2, Art (T) | 62       | * | 54       |   | 50         | * |
| pO2, Art (T)  | 144      | • | 56       | - | 157        | * |
| HCO3, Art     | 31       | * | 31       | • | 30         | • |
| BE, Art       | 7.8      | - | 8.3      | • | 6.9        | * |
|               |          |   |          |   |            |   |

Supine

Prone

Prone



# Take away points



Low tidal volume ventilation using ideal body weight (calculated based on height)



PEEP to recruit atelectatic lung and thus increase oxygen exchange



### Proning (ditto)