Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity

ATS COVID-19 Seminar
10/27/20
Carolyn Moderbacher, PhD

Lab of Shane Crotty, PhD
La Jolla Institute for Immunology
Previous study (Grifoni et al, *Cell* 2020) demonstrated that SARS-CoV-2-specific CD4 and CD8 T cells are detectable in recovered COVID-19 cases.

There is also a substantial fraction of the population with cross-reactive T cells.
Major knowledge gaps in understanding immunity to SARS-CoV-2

- How much of an adaptive immune response is there to COVID-19?
- What kind of immunity is important against COVID-19?
- Why do some people get severely ill and some people have mild disease?
Major knowledge gaps in understanding immunity to SARS-CoV-2

Assess all three arms of adaptive immunity across a wide-range of disease severity to better understand SARS-CoV-2 protective immunity

- Enrolled 54 subjects: 24 acute COVID-19, 15 convalescent COVID-19, 15 unexposed
- SARS-CoV-2-specific abs, including neutralizing abs
- Antigen-specific CD4 and CD8 T cells
- 22-parameter immunophenotyping panel
Antibody responses in acute COVID-19

- **RBD IgG titer**
 - Unexp: 10^5, Ac: 10^6, Co: 10^3
 - R = 0.88, p <0.0001

- **RBD IgA titer**
 - Unexp: 10^5, Ac: 10^6, Co: 10^3
 - R = 0.84, p <0.0001

- **Spike IgG titer**
 - Unexp: 10^5, Ac: 10^6, Co: 10^3

- **Spike IgA titer**
 - Unexp: 10^5, Ac: 10^6, Co: 10^3

- **PSV Neutralizing Titer**
 - Unexp: 10^5, Ac: 10^6, Co: 10^3

- **Live Neutralizing Titer**
 - Unexp: 10^0, Ac: 10^1, Co: 10^2

- **RBD IgG+IgA Titer**
 - Unexp: 10^5, Ac: 10^6, Co: 10^3

Cell, 2020
SARS2-specific CD4 T cell responses in acute COVID-19

Activation-induced marker (AIM) assays provide a cytokine-independent and highly sensitive measure of antigen-specific T cell responses.
Antiviral CD4 T cell responses in acute COVID-19

Secreted cytokines

intracellular cytokines
SARS2-specific cT_{FH} responses in acute COVID-19
SARS2-specific CD8 T cell responses in acute COVID-19
Adaptive immunity associations with disease severity

Adaptive Immunity (ADIM) score

SARS2-specific:
- Neutralizing antibodies
- CD4 T cells
- CD8 T cells

Subject negative for neutralizing antibodies
Coordinated adaptive immunity is protective immunity

Spearman correlogram
Age is a major COVID-19 risk factor, and part of that risk is weak adaptive immunity.
What about age may be causal in the poor adaptive immune response to COVID-19?
Age is a major COVID-19 risk factor

Naive T cell abundance is one immunological component of that risk

Statistics
Full data set (Ac, Co, Unexp)
COVID-19 disease (Ac, Co)
Acute COVID-19

Cell, 2020
Strong SARS-CoV-2-specific T cell responses associated with lower COVID-19 disease severity
CXCL10 may be a biomarker of poor CD4 and CD8 T cell responses to SARS2

Additional COVID-19 relationships with adaptive immunity
T cell and antibody responses in ‘average’ cases of COVID-19 look like protective immune responses and largely match antiviral immune response expectations.

Coordinated adaptive immunity is protective immunity:
- Responses involving multiple arms of adaptive immunity were better than partial responses
- We observed no convincing evidence of causal negative associations of adaptive immunity with disease severity

Age is a major COVID-19 risk factor, and adaptive immunity shortcomings are part of that problem
- Poorly coordinated antibody and T cell response
- Limited naive T cell repertoire
Potential implications for vaccine design

- Ideal vaccine: nAbs alone or nAbs + T cells?
- Role of pre-existing cross-reactive T cells in this coordinated adaptive response?
- Interplay of innate and adaptive immune responses?
 - Balancing immunosenescence with inflammaging
Acknowledgements

<table>
<thead>
<tr>
<th>Crotty Lab</th>
<th>Sette Lab</th>
<th>Peters Lab</th>
<th>LJI Bioinformatics Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sydney Ramirez</td>
<td>Daniela Weiskopf</td>
<td>Bjoern Peters</td>
<td>Jason Greenbaum</td>
</tr>
<tr>
<td>Jennifer Dan</td>
<td>Alba Grifoni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simon Belanger</td>
<td>Jose Mateus</td>
<td>Long Ping Victor Tse</td>
<td>UCSD</td>
</tr>
<tr>
<td>Christina Kim</td>
<td>April Frazier</td>
<td>Ralph Baric</td>
<td>Stephen Rawlings</td>
</tr>
<tr>
<td>Robert Abbott</td>
<td>Alex Sette</td>
<td></td>
<td>Davey Smith</td>
</tr>
<tr>
<td>Alex Kato</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jinyong Choi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eleanor Crotty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shane Crotty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saphire Lab</td>
<td>Baric Lab- UNC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kathryn Hastie</td>
<td>Long Ping Victor Tse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erica Ollmann Saphire</td>
<td>Ralph Baric</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LJI Flow Cytometry Core</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denise Hinz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cheryl Kim</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>