NIH Clinical Center NATIONAL INSTITUTES OF HEALTH

Nontuberculous Mycobacterial Infections of the Lung

Kenneth N Olivier, MD, MPH Chief, Pulmonary Branch, NHLBI

Disclosures to Audience

For the three years preceding this presentation:

Financial Relationships with Relevant Commercial Interests:

Company name: Beyond Air, Inc.

Type of relationship: Research support, investigator initiated

Company name: Matinas Biopharma

Type of relationship: Research support, industry initiated

Company name: Spero Therapeutics **Type of relationship:** Consultant

Company name: Insmed, Inc

Type of relationship: Consultant

Company name: AN2 Therapeutics Type of relationship: Consultant

Company name: Qrum

Type of relationship: Consultant

Company name: Oricula Therapeutics
Type of relationship: Consultant

*Amikacin liposome inhalation suspension approved for treatment refractory *M. avium* **complex** lung disease

*All others **not** approved for NTM lung disease Most approved for Rx of TB or other infections

Nontuberculous Mycobacteria

- Ubiquitous environmental organisms
- >190 species (http://www.bacterio.net/mycobacterium.html)
 - M. avium complex
 - M. abscessus group (3 subspecies)
 - M. kansasii
- Clinical
 - Lung
 - Skin, soft tissues
 - Disseminated

"Classic" NTM Lung Disease

- Male smoker
- Cavitary, lots of bugs
- Difficult to treat
- Pathogenesis
 - Structural disease
 - Disrupted barriers
 - Poor clearance
 - Opportunistic

Susceptibility to Pulmonary NTM

Impaired local defenses COPD, bronchiectasis, pneumoconiosis, silicosis, previous cavitary tuberculosis	Clinical history, chest imaging, PFTs
Cystic fibrosis	Sweat chloride test, CFTR genotyping
Primary ciliary dyskinesia	Nasal nitric oxide, cardinal clinical features, EM; genotyping (>40 cilia structure/function genes)
Impaired systemic immunity STAT3 deficiency	Total IgE, cardinal clinical features, family history, STAT3 genotyping
Immunosuppressant use Tumor necrosis factor-α blockers	Drug history
Lady Windermere syndrome	Clinical history with exclusion of the above conditions, special body morphotypic features

Adapted from Wu. Lancet Infect Dis 2015

Guidelines

New this month! ERS OFFICIAL DOCUMENTS ATS/ERS/ESCMID/IDSA GUIDELINE

Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline Eur Respir J 2020

Clin Infect Dis 2020

Charles L. Daley^{1,2,26}, Jonathan M. Iaccarino³, Christoph Lange^{4,5,6,7,26}, Emmanuelle Cambau^{8,26}, Richard J. Wallace Jr^{9,26}, Claire Andrejak^{10,11}, Erik C. Böttger¹², Jan Brozek ^{©13}, David E. Griffith¹⁴, Lorenzo Guglielmetti ^{©8,15} Gwen A. Huitt ^{1,2}, Shandra L. Knight^{1,6}, Philip Leitman^{1,7}, Theodore K. Marras^{1,8} Kenneth N. Olivier ¹⁹, Miguel Santin ¹⁹, Jason E. Stout ¹⁹, Enrico Tortoli ¹⁹, Jakko van Ingen ¹⁹, Dirk Wagner ¹⁹ and Kevin L. Winthrop ²⁵ Supplement

US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis Thorax 2016

R Andres Floto, ^{1,2} Kenneth N Olivier, ³ Lisa Saiman, ⁴ Charles L Daley, ⁵ Jean-Louis Herrmann, ^{6,7} Jerry A Nick, ⁸ Peadar G Noone, ⁹ Diana Bilton, ¹⁰ Paul Corris, 11 Ronald L Gibson, 12 Sarah E Hempstead, 13 Karsten Koetz, 14 Kathryn A Sabadosa, 13 Isabelle Sermet-Gaudelus, 15 Alan R Smyth, 16 Jakko van Ingen, ¹⁷ Richard J Wallace, ¹⁸ Kevin L Winthrop, ¹⁹ Bruce C Marshall, ²⁰ Charles S Haworth²

Pulmonary Disease Criteria (Guidelines)

Clinical (all 3)

- Pulmonary or systemic symptoms
- Radiographic nodular or cavitary opacities (CXR)
 or bronchiectasis with multiple small nodules (CT)
- Exclusion of other diagnoses
- And...

Microbiologic (any of these)

- At least 2 positive sputum specimens (same species)
- 1 bronchial wash/lavage
- Appropriate biopsy histopath & (+) respiratory culture

www.ntmfacts.com

Nodular bronchiectasis

- 77yo woman
 - 2y persistent, productive cough
 - Caseating granulomas
 - Sputum smear AFB (+), cultures (+) MAC

Audience Response Question #1

- Should patients with NTM pulmonary disease be treated with antimicrobial therapy or followed for evidence of progression ("watchful waiting")?
 - a. Antimicrobial therapy
 - b. Watchful waiting

Audience Response Question #1

- Should patients with NTM pulmonary disease be treated with antimicrobial therapy or followed for evidence of progression ("watchful waiting")?
 - In patients who meet diagnostic criteria for NTM pulmonary disease, we suggest initiation of treatment rather than watchful waiting, especially in context of positive AFB sputum smears and/or cavitary lung disease

Mycobacterium avium complex

- Nodular/bronchiectatic disease
 - Thrice weekly dosing
 - Clarithromycin <u>or</u> Azithromycin (preferred)
 - Ethambutol
 - Rifampin

Mycobacterium avium complex

- Nodular/bronchiectatic disease
 - Thrice weekly dosing
 - *Clarithromycin <u>or</u> Azithromycin (preferred)
 - Ethambutol
 - Rifampin

*For MAC pulmonary disease, guidelines recommend susceptibility-based treatment for macrolides and amikacin

Do current drugs work for Mac?

Wallace. AJRCCM 2010 A2596

Wallace. Chest 2014

Nodular bronchiectasis

- 77yo woman
 - 2y persistent, productive cough
 - Caseating granulomas
 - Sputum smear AFB (+), cultures (+) MAC
 - Started thrice weekly
 - Azithromycin
 - Ethambutol
 - Rifabutin

- Referred to NIH 1 year later
 - AFB smear (+); heavy growth MAC
 - 40lb weight loss in prior year
 - Fatigue, decrease exercise tolerance

Audience Response Question #2:

- This patient is failing treatment. What is the most likely reason?
 - a) Only taking meds three times weekly instead of daily
 - b) She was prescribed the wrong medications
 - c) Medication side effects led to poor adherence
 - d) She has macrolide resistant M. avium complex and needs amikacin

Audience Response Question #2:

- This patient is failing treatment. What is the most likely reason?
 - a) Only taking meds three times weekly instead of daily
 - b) She was prescribed the wrong medications
 - c) Medication side effects led to poor adherence
 - d) She has macrolide resistant M. avium complex and needs amikacin

Tips for tolerance

- Stagger drug start
- Dose at bedtime
- Alter dose schedule
- Probiotics
- Drug substitution

www.themorningsun.com

Drug toxicity monitoring

Drug	Toxicity	Monitoring
Macrolides	Prolonged QT; auditory; resistance with monotherapy	EKG; discontinue monoRx with NTM isolation
Ethambutol	Optic neuritis; peripheral neuropathy	Visual acuity/color vision; www.colorvisiontesting.com/is hitagraphy.colorvisiontesting.com/is
Rifampin	Orange urine; hepatotox; drug- drug interaction (azoles)	LFTs; check for drug interactions and substitute
Amikacin/Streptomycin	Ototoxicity; nephrotoxicity	Baseline audiogram and monthly f/u on iv; every 3 mos on inhaled; monitor levels (amikacin)

Nodular bronchiectasis/CF

- 14 yo male with CF
 - MAC from sputum/BAL, AFB smear (-)
 - Diagnosed age 2
 - Positive sweat Cl⁻ (x2)
 - F508del/unknown
 - 1st iv antibiotics age 12, MSSA
 - FEV1 2.89 (77%)

Diagnosis/Rx of NTM in CF

- ATS/IDSA NTM diagnostic criteria apply to CF
 - With following caveat...
 - "Other CF pathogens & co-morbities should be considered as contributors to symptoms and radiologic features when determining clinical significance of positive NTM cultures..."
- Treat other CF pathogens first and reassess clinical status
- Same regimen for MAC, but use daily dosing

Typical MAC treatment schedule

Cavitary M. avium complex

- 14 yo male with CF dx at 9 mos
 - F508del/G542X
 - Pseudomonas at time of dx
 - M. avium age 11 fevers, fatigue, wt loss
 - Started daily azithro, ethambutol, rifampin
- Referred to NIH with cavitary M. avium
 - Persistently 4+AFB, heavy growth culture

Mycobacterium avium complex

- Fibrocavitary or severe nodular bronchiectasis
 - Daily dosing
 - Clarithromycin <u>or</u> Azithromycin
 - Ethambutol
 - Rifampin or rifabutin
 - Amikacin or streptomycin for initial 2-3 months
 - (also for macrolide resistant disease)

Audience Response Question #3

- In patients with MAC pulmonary disease who have failed to respond after at least 6 months of guideline-based therapy, which of the following should be added?
 - a. Oral quinolone
 - b. Intravenous amikacin
 - c. Inhaled amikacin (parenteral formulation)
 - d. Amikacin liposome inhalation suspension (ALIS)

Audience Response Question #3

- In patients with MAC pulmonary disease who have failed to respond after at least 6 months of guideline-based therapy, which of the following should be added?
 - a. Oral quinolone
 - b. Intravenous amikacin
 - c. Inhaled amikacin (parenteral formulation)
 - d. Amikacin liposome inhalation suspension (ALIS)

Alternative drugs to consider - Mac

- Clofazimine
- Oxazolidinones (linezolid, tedizolid)
- Bedaquiline
- ?Quinolones
- Inhaled amikacin (parenteral formulation)
- Amikacin liposome inhalation suspension

Surgery?

- Retrospective nonCF
 - n=134, focal bronchiectasis
 - 88% *M. avium* complex
- Thoracoscopic resection
 - No mortality/major complication
 - Minor complications 12%
- Long term f/u 23 mos
 - 92 (84%) culture negative
 - 8 relapse or reinfection
 - 18 (16%) failed to convert

Lung resection for NTM in CF

 "Lung resection should only be considered in extraordinary circumstances and in consultation with experts in the treatment of NTM and CF"

ARQ #4 M. abscessus: When to start treatment?

- **A. 19 yo dx with CF**, hemoptysis, recurrent respiratory infections, bronchiectasis BAL x2 AFB (-), culture (+) *M. abscessus*; biopsy: granulomas, focal necrosis, AFB (+)
- **B. 6 mos after dx**, FEV1 88→86%, iv antibiotics *Pseudomonas/Staph*, no change FEV1; culture (+) for *Mabs*, AFB (-)
- C. 4 yrs after dx, FEV1 78 \rightarrow 68%, iv antibiotics, FEV1 72%; culture (+) Mabs, AFB (-)
- D. 10.5 yrs after dx, FEV1 68→56%, fevers, no response to iv antibiotics; BAL AFB (+), Mabs heavy amounts, no other organisms, new cavity on CT

Rx: *M abscessus* vs. *M massiliense*

	M. abscessus $(n = 24)$	M. massiliense $(n = 33)$	P Value
Symptomatic response			0.040
Improved	18 (75%)	32 (97%)	
Unchanged	4 (17%)	1 (3%)	
Worsened	2 (8%)	_	
Radiographic response on HRCT			0.003
Improved	10 (42%)	27 (82%)	
Unchanged	7 (29%)	5 (15%)	
Worsened	7 (29%)	1 (3%)	
Microbiologic response			< 0.001
Initial sputum conversion and	6 (25%)	29 (88%)	
maintenance of conversion			
Initial sputum conversion, with sputum relapse	4 (17%)	3 (9%)	
Failure to sputum conversion	14 (58%)	1 (3%)	

^{• 4} wks: iv amikacin bid + cefoxitin tid, oral clari, cipro, doxy

^{• 24} mos: oral clari, cipro, doxy

Drug Class	Resistance Gene	M. abscessus	M. massiliense
Macrolides	rrl (23S rRNA)	Point mutation adenine 2058/2059; Acquired resistance	Point mutation adenine 2058/2059; Acquired resistance
Macrolides	erm41	T28 sequevar (72%) inducible resistance C28 sequevar (28%) fully susceptible	Deletion (100%) fully susceptible
Aminoglycosides	rrs (16S rRNA)	1408 A→G (35%); 1491 G→T (48%); 1409 C→T (14%);	1408 A→G (35%); 1491 G→T (48%); 1409 C→T (14%);
Wallace. Antimicrob Agents Chemothe Bastian. Antimicrob Agents Chemother Prammananan. J Infect Dis 1998		1406 T→A (3%); Acquired resistance	1406 T→A (3%); Acquired resistance

Nessar. J Antimicrob Chemother 2011

M. abscessus group

Floto, Thorax 2016

Should involve an <u>intensive phase</u> followed by a <u>continuation phase</u>

M. abscessus group

- Intensive phase should include:
 - Daily oral macrolide (preferably azithromycin)*
 - 3-12 weeks of iv amikacin plus ≥1 of following *guided, but not dictated by* susceptibility tests
 - Tigecycline
 - Imipenem
 - Cefoxitin
 - Consider dual beta lactams, newer beta lactamase inhibitor combinations
- Duration of intensive phase should be determined by severity of infection, response to Rx & tolerability of regimen

^{*}If acquired/inducible macrolide resistance – cannot count as an anti-mycobacterial drug

M. abscessus group

- <u>Continuation phase</u> should include:
 - Daily oral macrolide (preferably azithro)*
 - Inhaled amikacin
 - 2-3 of the following oral antibiotics guided, but not dictated by susceptibility tests
 - Minocycline (consider omadacycline)
 - Clofazimine
 - Moxifloxacin
 - Linezolid (or tedizolid)
 - Rifabutin?

^{*}If acquired/inducible macrolide resistance – cannot count as an anti-mycobacterial drug

Inhaled Amikacin for Treatment of Refractory Pulmonary Nontuberculous Mycobacterial Disease

Kenneth N. Olivier¹, Pamela A. Shaw², Tanya S. Glaser¹, Darshana Bhattacharyya¹, Michelle Fleshner¹, Carmen C. Brewer³, Christopher K. Zalewski³, Les R. Folio⁴, Jenifer R. Siegelman⁵, Shamira Shallom⁶, In Kwon Park¹, Elizabeth P. Sampaio¹, Adrian M. Zelazny⁶, Steven M. Holland¹, and D. Rebecca Prevots¹

- Retrospective study n=20
- Inhaled amikacin + failing regimen
 - 250 mg/ml diluted 3 mL saline
 - Jet nebulizer
 - Started 250mg once daily → 500 bid
 - Dosing limited by dysphonia
 - 250 mg daily (50%)

Sex, female	80%
Age, mean (SD)	56 (16)
Cystic fibrosis	10%
Cavitary disease	45%
M. abscessus	75%
M. avium complex	25%
Months on Rx before inhaled amikacin, median (range)	60 (6, 190)

Olivier. Ann Am Thorac Soc 2014

Inhaled Amikacin for Treatment of Refractory Pulmonary Nontuberculous Mycobacterial Disease

Kenneth N. Olivier¹, Pamela A. Shaw², Tanya S. Glaser¹, Darshana Bhattacharyya¹, Michelle Fleshner¹, Carmen C. Brewer³, Christopher K. Zalewski³, Les R. Folio⁴, Jenifer R. Siegelman⁵, Shamira Shallom⁶, In Kwon Park¹, Elizabeth P. Sampaio¹, Adrian M. Zelazny⁶, Steven M. Holland¹, and D. Rebecca Prevots¹

Toxicity: 7 (35%) stopped

Reasons for stopping	n (%)
Ototoxicity	2 (10)
Hemoptysis	2 (10)
Reversible increase in Cr	1 (5)
Persistent dysphonia	1 (5)
Vertigo	1 (5)

Olivier. Ann Am Thorac Soc 2014

Griffith. Am J Respir Crit Care Med 2018

Griffith. Am J Respir Crit Care Med 2018

Toxicity monitoring

Drug	Toxicity	Monitoring
Cefoxitin	Fever, rash, eosinophilia, cytopenias	CBC
Clofazimine	Skin discoloration, GI – enteropathy (rare), long half-life (~2 mos)	symptoms
Imipenem	hepatotoxicity	LFTs
Linezolid	Cytopenias, optic neuritis, peripheral neuropathy	CBC; visual acuity and color vision; symptoms
Moxifloxacin	GI, insomnia/anxiety, tendonitis, prolong QT	Symptoms; EKG
Minocycline	Photosensitivity, GI, vertigo	Symptoms
Tigecycline	GI, hypoproteinemia, bilirubinemia, pancreatitis (rare)	Symptoms, albumin, bili

Discovery

LCB01-0371

- Target 50S ribosome
- For M. abs

PIPD1

- Target MmpL3
- For M. abs

Indole-2-carboxamides

- Target MmpL3
- For M. abs

Thiacetazone derivatives

- Target FAS-II dehydratase
- For M. avium and M. abs

Clofazimine*

- Target NDH-2
- For M. abs

Tedizolid*

- Target 50S ribosome
- For NTM

Bedaquiline*

- Target ATP synthase
- For NTM

β-lactams with avibactam*

- Target penicilin-binding protein
- For M. abs and M. avium

Rifabutin*

- Target RNA polymerase
- For M. abs

Phase I/II

Clofazimine

- Target NDH-2
- For M. avium PD

Liposomal amikacin for inhalation (LAI)

- Target 30S ribosome
- For M. abs PD

Nitric oxide

- Enhance host defense
- Produce reactive nitrogen intermediates
- For CF patients with NTM (especially *M. abs*)
- From AIT therapeutics

Gaseous nitric oxide (gNO)^a

- Enhance host defense
- Produce reactive nitrogen intermediates
- For NTM
- Thiolanox® from novoteris

Phase III

Liposomal amikacin for inhalation (LAI)

- Target 30S ribosome
- For refractory MAC PD

Clarithromycin vs azithromycin

- Target 50S ribosome
- For MAC PD

Clarithromycin vs moxifloxacin

- Target DNA gyrase
- For M. xenopi PD

Phase IV

Linezolid

- Target 50S ribosome
- For NTM disease

Mechanism of action

- Inhibition of cell wall synthesis
- Inhibition of protein synthesis
- Inhibition of nucleic acid synthesis
- Other mechanisms

Wu. Drug Discovery Today 2018

NIH Clinical Center NATIONAL INSTITUTES OF HEALTH

- Training and Career Opportunities at the NIH
 - NIH Clinical Center Critical Care Medicine Fellowship
 - NHLBI/Univ of MD PulmCCM Research Track Fellowship
 - *NHLBI/CC Advanced Lung Imaging Fellowship
 - Lasker Clinical Research Scholars Program
 - Up to 12 years intramural/extramural career development funding
 - Tenure track/tenured Clinical Investigator positions