

## Bronchopulmonary Dysplasia



Christopher D. Baker, MD

Associate Professor of Pediatrics
University of Colorado School of Medicine

#### **Bronchopulmonary Dysplasia**

# Relevant financial relationships with a commercial interest: No relevant commercial interests.







#### **BPD: Learning Objectives**

- After this lecture, participants will be able to:
  - Review the pathogenesis of Bronchopulmonary Dysplasia (BPD)
  - Summarize the vascular hypothesis of lung development
  - Differentiate between protective and supportive (chronic)
     ventilation strategies in preterm infants
  - Recognize the indications for chronic mechanical ventilation in infants with severe BPD
  - Determine which patients would benefit from chronic ventilatory support (potentially via tracheostomy)

#### **BPD: Lung Development**



Baker / Alvira 2014 Curr Opin Pediatr 26:306; Coalson 1999 CLD of Early Infancy 85-124

#### **Bronchopulmonary Dysplasia**

- Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, is associated with mechanical ventilation and oxidative stress.

  Northway 1967 NEJM 276:357
- In infants born at 23-26 weeks gestation, BPD consists of an arrest in lung vascular and alveolar growth.

  Jobe 1998 Early Hum Dev 53:81

#### **Pathogenesis of BPD**



#### **Bronchopulmonary Dysplasia**

# "Old BPD" Pre-surfactant Era INJURY TO LUNG

- Atelectasis/Hyperinflation
- Airway epithelial lesions
- Smooth muscle hyperplasia
- Diffuse fibroproliferation
- Remodeling of pulm arteries
- Decreased alveolarization



**Courtesy of SH Abman** 

#### **Bronchopulmonary Dysplasia**



# "New BPD" Post-surfactant ARREST OF DISTAL LUNG DEVELOPMENT

- Rare fibrosis
- Less regional heterogeneity
- Rare epithelial lesions
- Decreased, dysmorphic lung capillaries
- Alveolar simplification

Jobe 1999 Pediatr Res 46:641; Coalson 2003 Semin Neonatal 8:73

#### **BPD Severity: NIH Diagnostic Criteria**

TABLE 1. DEFINITION OF BRONCHOPULMONARY DYSPLASIA: DIAGNOSTIC CRITERIA

| Gestational Age          | < 32 wk                                                                                                                      | ≥ 32 wk                                                                                                                              |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Time point of assessment | 36 wk PMA or discharge to home, whichever comes first  Treatment with oxygen > 21%                                           | > 28 d but < 56 d<br>postnatal age or discharge<br>to home, whichever<br>comes first<br>for at least 28 d plus                       |
| Mild BPD                 | Breathing room air at 36 wk<br>PMA or discharge, whichever<br>comes first                                                    | Breathing room air by 56 d<br>postnatal age or discharge,<br>whichever comes first                                                   |
| Moderate BPD             | Need* for < 30% oxygen at 36 wk PMA or discharge, whichever comes first                                                      | Need* for < 30% oxygen at 56 d postnatal age or discharge, whichever comes first                                                     |
| Severe BPD               | Need* for ≥ 30% oxygen<br>and/or positive pressure,<br>(PPV or NCPAP) at 36 wk<br>PMA or discharge, whichever<br>comes first | Need* for ≥ 30% oxygen<br>and/or positive pressure<br>(PPV or NCPAP) at 56 d<br>postnatal age or discharge,<br>whichever comes first |

Jobe 2001 AJRCCM 163:1723

#### **BPD: The Spectrum of Severity**

- By these criteria, the following have severe BPD:
  - 3 month old 26-wk F: 1/8L NC; orally feeding; ready for discharge; O<sub>2</sub> reduction test: FiO<sub>2</sub> 0.31
  - 3.5 month old 24-wk M: CPAP 6 (FiO<sub>2</sub> 0.21); NG fed; unstable during O<sub>2</sub> reduction test
  - 4 month old 24-wk twin M: early HFOV; still intubated, conventional vent (FiO<sub>2</sub> 0.80); frequent desaturation "spells"; pulmonary hypertension; tracheostomy planned

#### Severe "Type 2" or "Grade 3" BPD

| Table I. BPD definition with severity                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                            |  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| BPD severity                                                   | Definition<br>(Modified from Jobe and Bancalari <sup>4</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Relative incidence<br>(Data from<br>Ehrenkranz et al <sup>5</sup> ) | Postdischarge<br>mortality<br>(Data from<br>Ehrenkranzet al <sup>5</sup> ) |  |
| None<br>Mild<br>Moderate<br>Severe (type 1)<br>Severe (type 2) | $O_2$ treatment <28 d and breathing room air at 36 wk PMA or discharge home, whichever comes first $O_2$ treatment at least 28 d and breathing room air at 36 wk PMA or discharge home, whichever comes first $O_2$ treatment at least 28 d and receiving <30% $O_2$ at 36 wk PMA or discharge home, whichever comes first $O_2$ treatment at least 28 d and receiving $\geq$ 30% $O_2$ or nasal CPAP/HFNC at $\geq$ 36 wk PMA $O_2$ treatment at least 28 d and receiving mechanical ventilation at $\geq$ 36 wk PMA. | 23.1%<br>30.3%<br>30.2%<br>16.4%                                    | 1.8%<br>1.5%<br>2.0%<br>4.8%                                               |  |

HFNC, high flow nasal cannula; O2, oxygen.



Abman 2017 J Pediatr 181:12 Higgins 2018 J Pediatr 197:300

#### A New Baby with "Old" BPD



Abman SH, In: The Newborn Lung, 2012, 21.21-21.29

#### Severe "Old" + "New" BPD

### "Old BPD" INJURY TO LUNG

- Altered inflation pattern of atelectasis and overinflation
- Severe airway epithelial lesions (hyperpiasia, squamous metaplasia)
- Airway smooth muscle hyperplasia
- Extensive fibroproliferation
- Prominent vascular hypertensive lesions
- · Decreased internal surface area and alveoli

### "New BPD" ARRESTED LUNG DEVELOPMENT

- Decreased, large and simplified alveoli (alveolar hypoplasia, decreased acinar complexity)
- Decreased, dysmorphic capillaries
- +
- · Variable interstitial fibroproliferation
- Less severe arterial/arteriolar vascular lesions
- Negligible airway epithelial lesions
- Variable airway smooth muscle hyperplasia

Coalson 2003 Semin Neonatol 8:73

Severe BPD = "the worst of both worlds..."

#### Severe "Old" + "New" BPD

#### **Increased Fibro-proliferation**



#### **Alveolar Simplification**



Coalson 2003 Semin Neonatal 8:73

#### **BPD: A Vascular Hypothesis**

 The lungs of preterm infants who die from BPD have markedly decreased vessels.



Disrupted vascular growth impairs alveolarization.

Abman 2001 AJRCCM 164(10):1755

- In neonatal rats, angiogenic inhibitors decrease pulmonary vascular growth and alveolarization. *Jakkula 2000 AJP Lung 279:L600*
- Can we augment vascular growth to prevent/treat BPD?

**BPD: Prevention and Treatment** 

#### **BPD Prevention**

- Delay preterm birth
  - Degree of prematurity and birth weight are the two biggest risk factors
- Antenatal steroids
  - Decreases respiratory distress syndrome, intraventricular hemorrhage, mortality
  - BPD incidence unchanged (due to increased survival)
- Exogenous surfactant
  - First dose during the first hour
  - Consider less invasive approaches
  - Can give up to two more additional doses if unstable during the first 72 hours of life

#### **BPD Prevention**

- Protective ventilation strategies
  - CPAP (even if must forego surfactant), high-frequency oscillatory/jet ventilation, noninvasive ventilation
- Judicious fluid management
  - Moderate fluid restriction (negative balance), higher fluid intake associated with BPD and death
- Caffeine
  - Not only for apnea of prematurity, but early caffeine therapy may reduce the risk of developing BPD
- Vitamin A
  - Some meta-analyses and multicenter studies show modest benefit, injections (3x/week)

#### **BPD Treatment**

- Ventilation strategies
  - Approach differs for chronic ventilation
  - Support breathing (rather than avoid injury)
  - For established disease: larger tidal volume, lower rate
  - Ideal time to stop weaning attempts?
- Oxygen Therapy
  - Avoid toxicity, optimal SpO2 target unclear (91-95%?)
- Diuretics
  - Improve lung compliance
  - Side effects: osteopenia, nephrocalcinosis, hearing loss
  - Long-term benefit unclear (avoid when possible)

### **Respiratory Outcomes in BPD**

#### **Respiratory Outcomes in Children**

7-8y: VLBW have ↓ FEV<sub>1</sub>, ↑ RV/TLC

Finland: Korhonen 2004 Acta Paediatr 93:316

- 9.5y: VLBW+BPD have ↓ FEV<sub>1</sub>, FVC, FEF<sub>50</sub>

  Germany: vom Hove 2014 J Pediatr 164:40
- **11y**: <26wk+BPD have ↓ FEV<sub>1</sub>, ↑ bronchoreactivity *EPICure; UK: Fawke 2010 AJRCCM 182:237*
- **1991-92** vs. **1997** vs. **2005** (at 8y)
  - 2005: ↓ MV / ↑ CPAP, lung function unchanged

Australia: Doyle 2017 NEJM 377:329

### Young Adults with "Old" BPD Have Airways Disease

#### AIRWAYS DISEASE AT ~18 YRS



Northway 1990 NEJM 323:1793

#### Respiratory Outcomes in Young Adulthood

- **17y**: ↑ asthma, ↓ FEV<sub>1</sub>
- 25y: ↓ lung function, ↑ RV/TLC, +methacholine

response Norway: Halvorsen 2004 Acta Paediatr 93:1294

Norway: Vollsæter 2015 ATS Annals 12:313

• **19y**: ↓ FEV<sub>1</sub>, FVC, FEV<sub>1</sub>/FVC; normal lung volumes

Australia: Doyle 2006 Pediatrics 118:108

25y: persistently ↓ airflows, no air trapping

Australia: Gibson 2015 Pediatr Pulmonol 50:987

### Ventilation Strategies: Protective vs. Supportive

#### **Protective Ventilation**

- GOAL: avoid lung injury
  - "Gentle-ation", early extubation
- Appropriate in the immediate postnatal period
- Consider less-invasive approaches:
  - Continuous positive airway pressure (CPAP)
  - High-frequency oscillatory ventilation
  - Small tidal volume / high rate vent strategy
- Delivery room CPAP (in lieu of postnatal surfactant)
- Minimally-invasive surfactant therapy (by catheter)
- Treatment of acute respiratory distress in children

#### **Supportive Ventilation**

- GOAL: support breathing, promote growth and development, stability, baby is happy
- Appropriate for established / chronic lung disease
- Heterogeneous lung: regions of fibrosis/atelectasis as well as regions of marked hyperinflation
- Supportive approaches to ventilation:
  - Larger tidal volume / lower rate vent strategy
  - PEEP to overcome dynamic airway collapse
- Support breathing for months/years; defer weaning
- Consideration of tracheostomy

#### Tracheobronchomalacia



#### **Ineffective Chronic Ventilation**



#### **Effective Chronic Ventilation**



#### **Chronic Ventilation: Other Factors**

- Optimal nutrition for linear growth without obesity
- Aspiration need for gastric fundoplication?
- Airway clearance / suctioning of secretions
- Medications (e.g., inhaled/enteral steroids, bronchodilators, diuretics)
- Pulmonary hypertension screening, treatment
- Bedside emergency management still A-B-C!
- Agitation, dyssynchrony sedation, NAVA
- Developmental therapy PT, OT, speech, feeding

#### **Interim Summary**

- The respiratory sequelae of BPD persist into young adulthood
- Strategies for protective and supportive ventilation differ dramatically
- More importantly, the goals of care are very different
- Chronic ventilation gives a baby with (Type 2) severe BPD the best chance at a positive outcome

**Case: NICU Consult** 

#### Case: NICU Consult

3 month-old 24-week preterm twin girl, failed extubation multiple times despite aggressive steroid therapy (dexamethasone), has frequent desaturation spells.

<u>Current ventilator settings</u>: volume control, Vt 5ml/kg, i-time 0.4 sec, rate 35, PEEP 5 cm  $H_2O$ , PS 12 cm  $H_2O$ , Fi $O_2$  0.50

**Blood gas:** pH 7.36, p<sub>a</sub>CO<sub>2</sub> 64, p<sub>a</sub>O<sub>2</sub> 118

Medications: Lasix 1 mg/kg BID, prednisolone 0.5 mg/kg every 48 hours, albuterol q4h PRN

**Studies:** CXR: hyperinflation, patchy atelectasis

**Echocardiogram**: no interventricular septal flattening

Flexible bronchoscopy: severe tracheobronchomalacia

# What changes in ventilator strategy do you suggest?

- A. Change to non-invasive ventilation
- B. Increase Vt, i-time, and PEEP; decrease rate
- C. Increase Vt and rate
- D. Increase pressure support and decrease inspiratory time
- E. Change to high frequency oscillatory ventilation (HFOV)

#### **Correct answer:**

B. Increase Vt, i-time, and PEEP; decrease rate

#### **Answer Rationale**

- Child will likely not tolerate extubation
- In severe BPD, larger Vt with longer i-time optimizes gas distribution
- A slower rate permits adequate exhalation
- PEEP supports dynamic airway collapse
- Increasing the rate may lower the pCO2, but increases V/Q mismatch
- HFOV is challenging in established BPD due to highly variable time constants and heterogeneous lung injury

# Interdisciplinary Ventilator Care Program

#### Ventilator Care Program (VCP)

- VCP History in CO: Pulm/Neo collaboration (Abman, Gien)
- Mission: Quality inpatient-to-outpatient care
- Team approach many key contributors
- Transition to PRCU (out of ICU) before discharge
- Clinical rounds: two meetings/week since 2007
  - NICU rounds: at bedside, families participate
  - VCP rounds: conference room, discharge planning
- Pulm-NICU Consult team: since Jan 2019
- Impact on families: mortality, LOS/cost, traumatic stress

#### Ventilator Care Program (VCP)

- **Point-prevalence**: 20+ inpatients, 100+ outpatients (in seven state region)
- **Key discharge barrier:** inadequate in-home private duty nursing (worse in 2018-2019)
- 96% of U.S. survey respondents either "Disagreed" or "Strongly Disagreed" that there was "an adequate supply of home nursing services." Sobotka S 2018, Pediatric Pulmonol 54:40-46

# **Many Factors Delay Discharge**



Sobotka 2016 Hosp Pediatr 6(9):552-7

#### **VCP Standardized Process**

- Quality Improvement (may not be generalizable)
- Process map: increases safety, improves efficiency, defines roles, ensures nothing overlooked
- Focus on care coordination (case management)
- Summarizes caregiver responsibilities
- Standarized process; highly customized
- Used to create the family-friendly "Road Map"
- Reduced length of stay (LOS) by 42% and post-ICU
   LOS by 55%
   Baker 2016 Pediatrics 137:e20150637

### **Process Mapping**



Baker 2016 Pediatrics 137:e20150637

BREATHING INSTITUTE **Chronic Ventilation** Children's Hospital Colorado Road Map ICU Education, Education! MANAGEMENT AND ADDRESS OF THE PARTY AND ADDRES ----Early "I need Meet with Pulmonary 1st Trach Meet VCP& & ENT Change New Team! Surgeon Consultation (and a trach) START PRCU (or Rehab Service) Other Skills Getting One-Way Getting (Support for Siblings) (meds, Big Home Valve Trials? g-tube, a Portable: Adjustment! Ready feeding) Going on Walks Education, Education! Education, Education! Order 24 - 72 Hour Nursing Meet Home **Transition** Home Simulation is Ready! to Home Family Stay Equipment Legend VCP = Ventilator Care Program ICU = Intensive Care Unit PRCU = Pediatric Respiratory Care Unit **HOME SWEET HOME!** CPR = Cardiopulmonary Resuscitation

Baker 2016 Pediatrics 137:e20150637 (revised; rebranded)

#### **VCP Caregiver Education**

- Interdisciplinary collaborative: led by RT and Nursing
- Teach-back Method
- Multiple modalities utilized (verbal, written, videos, CPR, high-fidelity SIM)
- Bilingual (English/Spanish)
- Address learning needs (language barriers, dyslexia)
- Timelines, checklists, colorcoded medications



#### **High-Fidelity Simulation (SIM)**

- AIM: To recreate emergencies in a safe/artificial setting
- Two Complex Scenarios (90 min, including debriefing):
  - Plugged tracheostomy requires suctioning the trach
  - Ventilator malfunction requires full CPR and calling 911
- To date: 100+ children (200+ caregivers)







### **High-Fidelity Simulation (SIM)**

- SIM scheduled during week before discharge (to confirm/reinforce skills)
- Families identify gaps in understanding
- Not a pass/fail "test"
- Limitations: cost, time, difficult to repeat
- Subjectively, SIM improved caregiver confidence

Tofil 2013 Clinical Pediatrics 52(11):1038

- In our population, caregivers ranked post-SIM debriefing the most beneficial element of training

  Thrasher/Baker 2018 J Pediatr Nurs 38:114
- 2018: Expanded to all "tracheostomy" patients (n=20+)

#### **Summary**

- BPD consists of an interruption in pulmonary vascular and alveolar growth after preterm birth
- Preterm infants with severe BPD can develop features of both "new BPD" and "old BPD"
- Optimal approaches to preventing and treating BPD remain unclear
- Children and young adults with BPD often have airflow obstruction
- Supportive Ventilation: chronic lung disease can improve over time (years)
- The care of chronically-ventilated children is improved with an interdisciplinary program

Should We Chronically Ventilate Infants with Severe Chronic Lung Disease?

# Severe Bronchopulmonary Dysplasia

Age 6 months Age

Age 14 months Age 23 months



Abman SH, The Newborn Lung, 2011 (Castile RG)



# Thank you.

Christopher.Baker@UCAnschutz.edu