Pediatric Lung transplantation

Stuart C. Sweet MD, PhD
Department of Pediatrics
Washington University, St. Louis, MO

Welcome to ATS 2020 VIRTUAL IWV # hgv

Disclosures

No financial disclosures relevant to this presentation

Pediatric lung transplant - Overview

Indications and Contraindications

Outcomes and Complications

Challenges and Opportunities

Lung Transplant Indications

- Untreatable end-stage pulmonary parenchymal or vascular disease
- Low probability of recurrence
- No other significant medical diseases
- Limitation of daily activity
- Pulmonary rehabilitation potential
- Satisfactory psychosocial support system

Absolute Contraindications

- Second major organ failure
- Burkholderia Cenocepacia colonization
- HIV Infection*
- Hepatitis B or Hepatitis C* Infection
- Active malignancy within past two years
- Progressive Neuromuscular Disorder

^{*}Becoming debatable

Relative Contraindications

Invasive Ventilation

- Risk Factor in Adults
- Less in in infants

Fungal and ATM Colonization

- PreTx Eradication vs. PostTx
 Prophylaxis
- Problematic with Single LT

Psychosocial Issues

- MajorPsychoaffectiveDisorders
- RefractoryNonadherence

Pediatric Lung Transplants: Diagnosis Distribution by Location

(Transplants: January 2008 – June 2017)

Pediatric Lung Transplants: Recipient Age Distribution by Year of Transplant

Lung Transplant Diagnoses: Infancy

Parenchymal Disease

- ChILD
 - SPB, SPC,
 ABCA3, NKX2.1
- Filamin A
- Rarely BPD

Pulmonary Vascular Disease

- PH related to CHD
- ACD / MPV
- Pulmonary Vein Stenosis

Mixed

CDH with pulmonary hypoplasia and PH

Lung Transplant in Infants & Toddlers

Added Challenges

- Lung FunctionAssessment
- Bronchoscopy / Biopsy
- Lung Growth

Specific Infant Requirements

- Weight > 3.5 kg
- EGA > 26-28 weeks
- No other organs involved
- Stable for Transport

Infant and Toddler Diagnoses

Timing of Referral

- Early! No downside
- Cystic Fibrosis & Bronchiectasis
 - FEV₁ < 40-50% predicted for children (Ramos et al. JCF 2019 18(3):321-333)
- Pulmonary Hypertension
 - Progressive disease despite therapy
 - CI < 2.0 L/min/m2, RA pressure > 15 mm Hg, Mean PA pressure > 55 mm Hg
 - Hemoptysis, syncopal episodes
 - Consider Pott's Shunt (Aggarwal et al Circulation:cardiovascular imaging 2018 11(12))
- Infants with congenital respiratory failure (SBP, ABCA3, NKX2.1), PVS soon
- Other Diseases Less Clear

Lung Transplant Evaluation

Pulmonary Function Testing

- Spirometry
- Lung Volumes
- DLCO
- Blood Gases

Studies

- CXR
- Chest CT
- Echo / Cath?
- Consider VQ
- 6 MWT

Laboratory

- Comprehensive Metabolic Panel
- Viral Serologies
- Sputum Culture
- HLA Antibodies

Psychosocial Evaluation

- Social Work
- Psychology
- Child Life
- Financial

Pre-Transplant Case #1

- Full term infant with Respiratory Distress Syndrome
 - 3.9 kg infant born at 40 weeks.
 - Respiratory distress at birth
 - Intubated in the Delivery Room.
 - CXR with ground glass infiltrates.
 - Minimal response to surfactant administration.
 - Now 2 weeks old with slowly increasing respiratory support.
 - Open lung biopsy with alveolar proteinosis.

Pre-Transplant Case #1

- For this term infant with RDS, what is the least likely diagnosis?
 - a) ABCA3 Transporter Deficiency
 - b) Surfactant Protein B Deficiency
 - c) NKX2.1 Mutation
 - d) Surfactant Protein C Deficiency

Pre-Transplant Case #1

- For this term infant with RDS, what is the least likely diagnosis?
 - a) ABCA3 Transporter Deficiency
 - b) Surfactant Protein B Deficiency
 - c) NKX2.1 Mutation
 - d) Surfactant Protein C Deficiency

Lung Transplant Operation

- Bilateral Sequential
 - Most Common in Pediatrics
 - Clamshell incision
 - CPB or ECMO
- En bloc
 - Median sternotomy
 - Tracheal anastomosis
- Single Lung Transplant
 - Rare

Lung Transplant Operation

- Heart Lung Transplant
 - LV failure
 - Irreparable congenital cardiac abnormality
 - Waiting times longer
 - Outcomes track with lung transplant

Initial Post-transplant Therapies

- Empiric Antibiotics
 - Cover pre-transplant organisms
 - Cover any organisms in donor
- Prophylactic Antibiotics
 - Antifungals (i.e. posaconazole)
 - CMV/HSV (Valgan / Valacyclovir)
 - PJP (TMP/SMX)
 - Candida (Nystatin)

Pediatric lung transplant - Overview

Indications and Contraindications

Outcomes and Complications

Challenges and Opportunities

Pediatric Lung Transplants: Kaplan-Meier Survival by Diagnosis

JHLT. 2018 Oct; 37(10): 1155-1206

Lung Transplants: Kaplan-Meier Survival Conditional on Survival to 1 Year by Recipient Age Group

JHLT. 2018 Oct; 37(10): 1155-1206

(Transplants: January 1990 – June 2016)

Pediatric Lung Transplants: Relative Incidence of Leading Causes of Death

Complications - Overview

Three Phases of Transplant

- Immediate (First Week)
- Early (1 Week to 3 Months)
- Late (after 3 Months)

Four Complication Categories

- Immunologic (rejection)
- Infectious
- Surgical
- Other

Immediate Complications

- Hyperacute Rejection
 - Rarely seen
- Early Graft Dysfunction
 - Aka "reimplantation response", "ischemia/reperfusion injury"
- Infection
- Surgical Complications
 - Bleeding
 - Anastomosis Breakdown
 - Vascular complications

Post-Transplant Case #1

- You are caring for a 12 y/o patient with pulmonary hypertension who had a lung transplant 6 hours ago.
 - Ischemic times 7:00 R, 7:45 L
 - Pre-transplant PRA 0%
- In the past 2 hours he has developed:
 - diffuse pulmonary infiltrates
 - poor lung compliance
 - moderate gas exchange abnormalities

Post-Transplant Case #1

- What is the most likely diagnosis for this lung transplant recipient with severe graft dysfunction:
 - a) Acute rejection
 - b) Donor viral infection
 - c) Pulmonary vein obstruction
 - d) Primary Graft Dysfunction

Post-Transplant Case #1

- What is the most likely diagnosis for this lung transplant recipient with severe graft dysfunction:
 - a) Acute rejection
 - b) Donor viral infection
 - c) Pulmonary vein obstruction
 - d) Primary Graft Dysfunction

Early Complications - Infection

Viruses

- CMV (ganciclovir prophylaxis)
- Adenovirus
- RSV

Opportunistic

PJP

Photo: Yousem, S. 3rd Banff Conference on Allograft Pathology

Early Complications – Acute Rejection

- Acute Rejection: Symptoms/ Findings Cough, respiratory difficulty Fever, inspiratory crackles Elevated WBC Decreased FEV1
 - Perihilar Infiltrates
 - Pleural Effusions

A2 Images Courtesy F. White, Washington University A3

Early Complications – Acute Rejection

- Acute Rejection Treatment
 - Pulse steroids (methylprednisolone 10 mg/kg IV x 3 doses)
 - Reassess (i.e. biopsy 2 wk post rx)
 - Consider additional therapy if worse (more steroids, Antithymocyte globulin)

Early Complications – Humoral Rejection

- Humoral Rejection –
 Symptoms / Findings
 - Can be asymptomatic
 - Inspiratory crackles
 - Decreased FEV1
 - Presence of donor specific HLA antibodies
 - Positive C4d capillary loop staining

Image Courtesy F. White, Washington University

Positive C4d Staining

Images Courtesy F. White, Washington University

Early Complications – Humoral Rejection

- Humoral Rejection Treatment
 - Many options Controversial
 - Plasma Exchange
 - Proteosome Inhibitors (carfilzomib)
 - B-Cell depletion (rituximab)
 - Complement Inhibition (eculizumab)
 - Pulse Steroids
 - Antithymocyte globulin

Image Courtesy F. White, Washington University

Capillaritis

Early Complications

- Surgical Complications
 - Airway anastomosis narrowing / malacia:
 - More common in infants, related to ischemic injury to mainstem bronchi
 - Present with respiratory difficulty, obstruction on spirometry
 - Treated by serial dilation with balloon catheter
 - Rarely require placement of endobronchial stent
 - Airway dehiscence:
 - Can be asymptomatic
 - Can present with pneumomediastinum on CXR / CT
 - Diaphragm Paresis
 - Cases with recurrent infection/atelectasis treated with plication
 - Vocal Cord Paresis

Early Complications

- Other Complications
 - Hypertension common side effect of CNI use
 - Seizures / posterior reversible encephalopathy syndrome (PRES)
 - Associated with elevated CNI levels
 - Renal Failure
 - Usually in patients with preexisting renal dysfunction
 - Gastrointestinal
 - Delayed Gastric Emptying
 - May make reflux more likely
 - Aspiration can be a major issue
 - DIOS in CF Patients
 - Arrhythmias
 - Often SVT

- You are evaluating an 8 y/o with CF, 2 months post transplant with fever and cough
 - Vitals: tachypnea, SaO2: 92-94% RA
 - PFTs: refuses at home, down in lab
 - Exam: mild distress, crackles at bases
 - CBC: WBC 18K, no left shift CXR: perihilar infiltrates, small right pleural effusion
 - Bronchoscopy: anastomoses intact and patent, no airway mucus, BAL gram stain – moderate polys, no organisms

- What is the most likely diagnosis for this transplant recipient with fever and cough :
 - a) Community acquired pneumonia
 - b) Acute Cellular Rejection
 - c) Viral Pneumonia
 - d) Bacteremia

- What is the most likely diagnosis for this transplant recipient with fever and cough :
 - a) Community acquired pneumonia
 - b) Acute Cellular Rejection
 - c) Viral Pneumonia
 - d) Bacteremia

Late Complications

- Infection, Acute and/or Humoral Rejection...
- Developmental delay (particularly in infants)
- Renal Failure
- Diabetes
- Malignancy
- Chronic Lung Allograft Dysfunction (CLAD)

Pediatric Lung Transplants Cumulative Morbidity Rates in <u>Survivors</u> within 1, 5 and 7 Years Post-Transplant (Transplants: January 1994 – June 2016)

Outcome	Within 1 Year	Total N with <u>known</u> response	Within 5 Years	Total N with <u>known</u> response	Within 7 Years	Total N with <u>known</u> response
Severe Renal Dysfunction ¹	2.0%	(N = 843)	6.1%	(N = 327)	7.8%	(N = 204)
Creatinine > 2.5 mg/dl	1.5%		4.3%	ó	5.9%	6
Chronic Dialysis	0.4%		1.2%	ó	1.0%	6
Renal Transplant	0.1%	I	0.6%	ó	1.0%	6
Diabetes ²	18.8%	(N = 848)	28.6%	(N = 336)	-	
Bronchiolitis Obliterans Syndrome	9.3%	(N = 794)	36.9%	(N = 260)	45.1%	(N = 153)

¹Severe renal dysfunction = Creatinine > 2.5 mg/dl (221 μmol/L), dialysis or renal transplant

² Data are not available 7 years post-transplant.

Late Complications

- Infection, Acute and/or Humoral Rejection...
- Developmental delay (particularly in infants)
- Renal Failure
- Diabetes
- Malignancy
 - Post Transplant Lymphoproliferative Disease (PTLD)
 - Other malignancies
- Chronic Lung Allograft Dysfunction (CLAD)
 - Bronchiolitis Obliterans (OB)
 - Restrictive Allograft Syndrome (RAS)

Pediatric Lung Transplants Cumulative Post-Transplant Malignancy Rates in <u>Survivors</u>

(Transplants: January 1994 – June 2016)

Malignancy/Type	•	1-Year Survivors	5-Year Survivors	7-Year Survivors	
No Malignancy		814 (95.0%)	316 (90.8%)	203 (90.2%)	
Malignancy (all types combined)		43 (5.0%)	32 (9.2%)	22 (9.8%)	
Malignancy	Lymphoma	40	31	21	
Type*	Other	2	1	0	
	Skin	1	0	1	
	Type Not Reported	0	1	0	

"Other" includes liver and primitive neuroectodermal tumor.

^{*} Recipients may have experienced more than one type of malignancy so the sum of individual malignancy types may be greater than the total number with malignancy.

Malignancies

PTLD

- Usually B-cell non-Hodgkins lymphoma
- 5-15% of patients
- Associated with EBV infection
- Risk factors include CF and acute rejection episodes
- Elevated EBV PCR sensitive but not specific
- Initial therapy: rituximab ± low dose cyclophosphamide / prednisone
- Some patients require chemotherapy
- Other malignancies
 - Skin Cancer

PTLD

Late Complications

- Infection, Acute and/or Humoral Rejection...
- Developmental delay (particularly in infants)
- Renal Failure
- Diabetes
- Malignancy
 - Post Transplant Lymphoproliferative Disease (PTLD)
 - Other malignancies
- Chronic Lung Allograft Dysfunction (CLAD)
 - Bronchiolitis Obliterans (OB)
 - Restrictive Allograft Syndrome (RAS)

Pediatric Lung Transplants Freedom from Bronchiolitis Obliterans Syndrome by Age Group

(Transplants: January 1994 – June 2016)

Chronic Lung Rejection

Chronic Lung Allograft Dysfunction (CLAD)

Primarily Obstructive

Bronchiolitis Obliterans
- Histology (BO)
Bronchiolitis Obliterans
Syndrome – PFTS (BOS)

Primarily Restrictive

Restrictive Allograft Syndrome – PFTs (RAS)

J Heart Lung Transplant 2014;33:127-133

Chronic Lung Allograft Dysfunction

Bronchiolitis Obliterans

Images Courtesy F. White, Washington University

Bronchiolitis Obliterans

Image Courtesy F. White, Washington University

CLAD Outcomes

Sato et al., J HeartLungTransplant 2011;30:735–42

CLAD – Risk Factors

- Acute Rejection Episodes
- Lymphocytic Bronchitis / Bronchiolitis
- Gastroesophageal Reflux
- HLA / Donor Specific Antibodies
- Autoantibodies (K-α1-tubulin, Collagen V)
- Infections
- Primary Graft Dysfunction

CLAD – Treatment

- Augmented Immunosuppression (T-cell directed Cytolytic therapy)
- Azithromycin
- Address GERD
- Photopheresis
- Retransplant

NO CONSISTENTLY EFFECTIVE THERAPY

- You are seeing a 16 m/o who is 9 months post transplant who presents with persistent fever, poor PO intake
 - Treated x 3 in last two months for otitis, bronchitis.
 - Exam: SaO2: 95-97%. Irritable but consolable. Lungs Clear. Abdomen slightly distended and tender. No organomegaly.
 - CXR: nothing new, WBC normal
 - EBV PCR elevated (since 3 months post transplant)

- Bronch: Mild right sided narrowing. Some mucus on right.
- BAL :Gram stain negative. Culture 20 K alpha strep.
- TBBx: Lymphocytic bronchitis, no rejection
- CT Chest / Abdomen: focal nodules in left base, and kidney. Mesenteric thickening

- What is the most likely diagnosis for this transplant recipient with persistent fever:
 - a) Acute Rejection
 - b) Post-Transplant Lymphoproliferative Disorder
 - c) Bronchiolitis Obliterans
 - d) Fungal Pneumonia

- What is the most likely diagnosis for this transplant recipient with persistent fever:
 - a) Acute Rejection
 - b) Post-Transplant Lymphoproliferative Disorder
 - c) Bronchiolitis Obliterans
 - d) Fungal Pneumonia

Pediatric lung transplant - Overview

Indications and Contraindications

Outcomes and Complications

Challenges and Opportunities

Pediatric Lung Transplants: Number of Transplants by Pediatric Center Volume

Analysis includes deceased and living donor transplants.

Cystic Fibrosis Median Survival

^{*}Using the currently recommended method for calculating median predicted survival.

Pulmonary Hypertension Survival

Chest. 2012;142(2):448-456.

Pediatric Lung Transplants: Diagnosis by Year (Number)

Adult Lung Transplants: Major Diagnoses by Year (Number)

Challenges

- More even distribution of pediatric transplants across centers
- Population of pediatric lung transplant candidates changing (less CF, less IPH)
- Increasing competition for adult transplant (numbers, high acuity candidates)
- Increasing Candidate Acuity
- Ultimately, Patient Outcomes are at Risk

Bridges to Transplant

- Historical Paradigm
 - End Stage Lung Disease
 - Respiratory Failure
 - Mechanical Ventilation with escalating support
 - Extracorporeal Life Support (ECLS)
 - Historically meant VA ECMO
 - Complication rate increases with time
 - Sedation / muscle relaxant requirements may limit rehabilitation potential
 - Outcomes poor...

Bridges to Transplant

Evolving Approach

Historically
 Dismal
 Outcomes with
 VA ECMO

Bridges to Transplant

Evolving Approach

- VV ECMO in Selected Cases
 - Early Tracheostomy when Possible
 - Active Rehabilitation (a work in progress)
 - Several successful cases
- Pumpless Oxygenator for Refractory Pulmonary Vascular Diseases – PA to LA configuration
 - Four patients, one bridged to recovery, one successfully transplanted
 - All with significant vascular complications

Gazit et al. *J Thorac Cardiovasc Surg* 2011; 141(6) e48-e50 Hogansen et al. *J Thorac Cardiovasc Surg*. 2014;147(1):420-6

Virtual Table Exercise (10 minutes)

- Introduce yourselves
- Identify a spokesperson
- Discuss and develop answers to the assigned case from the materials provided
- Be prepared to provide answers and rationale

Key Points

- Pediatric lung transplantation is an accepted therapy
- Long term outcomes remain an issue
- Increasing competition for organs drives
 - Need to increase lung donor utilization
 - Evolution of bridging strategies

Thanks!

