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Abstract

This document presents the proceedings from the workshop
entitled, “New Strategies and Challenges in Lung Proteomics
and Metabolomics” held February 4th–5th, 2016, in Denver,
Colorado. It was sponsored by the National Heart Lung Blood
Institute, the American Thoracic Society, the Colorado Biological
Mass Spectrometry Society, and National Jewish Health. The
goal of this workshop was to convene, for the first time, relevant
experts in lung proteomics and metabolomics to discuss and
overcome specific challenges in these fields that are unique to the
lung. The main objectives of this workshop were to identify,
review, and/or understand: (1) emerging technologies in
metabolomics and proteomics as applied to the study of the

lung; (2) the unique composition and challenges of lung-specific
biological specimens for metabolomic and proteomic analysis; (3)
the diverse informatics approaches and databases unique to
metabolomics and proteomics, with special emphasis on the lung;
(4) integrative platforms across genetic and genomic databases
that can be applied to lung-related metabolomic and proteomic
studies; and (5) the clinical applications of proteomics and
metabolomics. The major findings and conclusions of this
workshop are summarized at the end of the report, and
outline the progress and challenges that face these rapidly advancing
fields.
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Overview: The Role of
Proteomics and Metabolomics
in Systems Biology

Personalized disease risk and drug response
predictions based on genomic sequences now
represent a cornerstone of precision
medicine, and have also been successful at
informing therapeutic decisions. However,
genomics remains relatively limited in its
ability to predict the onset of most complex
diseases, largely because genomic
information does not account for dynamic
environmental influences (1). To better
understand lung disease, one needs to
examine the downstream changes occurring
at the level of proteins and metabolites.

Proteins are the main effectors of
cellular physiology. Therefore, the proteome,

alone or through its integration with other
systems sciences, is a particularly informative
tool for understanding pulmonary diseases
(Figure 1) (2). Until recently, technology was
limited to studying the role of single
proteins. Although mass spectrometry (MS)
has been an important tool for decades, new
technologies and strategies in peptide/
protein separation, MS analysis, quantitative
protein analysis, and databases now enable
the simultaneous analysis of dozens to even
thousands of proteins in a single biological
sample. In parallel, advances in statistical
and bioinformatics tools now allow insight
into protein pathways and networks
involved in lung disease. Consequently, there
has been a surge in the number of
proteomics publications related to lung
disease (Figure 2) (3).

Metabolites, small biological compounds
with a low molecular weight (typically <1,500
Daltons), reflect the activity of proteins, and
serve as signaling molecules for processes
that include gene and protein regulation (4, 5)
(Figure 1). As such, the added value of
metabolomics (i.e., the simultaneous
measurement of small molecules in a
biological sample) is that it reflects,
complements, and informs data acquired by
other systems biology sciences (Figure 1) (6).
Because metabolic profiles change rapidly
with the biologic state, metabolomics
permits unique insight into both the
pathogenesis of disease and drug response
(pharmacometabolomics), as well as often
unapparent phenotypes and endotypes. The
trans-omic approach provides a unique
opportunity to gain insights in to how genetic
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Figure 1. Proteomics and metabolomics are members of systems biology science that includes genomics, epigenomics, and transcriptomics.
Metabolomics is particularly reflective of gene and protein activity. DNA structure: https://commons.wikimedia.org/wiki/File:A-DNA,_B-DNA_and_Z-DNA.png.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled GNU Free Documentation License. Protein structure: Structure of the C3 protein. Emw (https://commons.wikimedia.org/
wiki/File:Protein_C3_PDB_1c3d.png), “Protein C3 PDB 1c3d,” https://creativecommons.org/licenses/by-sa/3.0/legalcode. Images of metabolites are publically
available from: http://www.hmdb.ca/ with citation of: Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, et al., HMDB 3.0 — The Human Metabolome

Database in 2013. Nucleic Acids Res. 2013. Jan 1;41(D1):D801-7. 23161693.
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programs are translated into biological
function and how alterations in the program
associate with the onset of diseases. As such,
metabolomics may reveal early biomarkers
that could improve risk assessment and
diagnosis of complex diseases. Furthermore,
metabolic profiles are influenced by exogenous
factors, including medications, lifestyle, and the
environment, so metabolomic profiling has the
potential to unravel the impact of both genetic
and nongenetic factors on disease onset,
progression, and severity.

This report highlights the significant
progress and continued major challenges in
the fields of proteomics and metabolomics,
with particular focus on lung health and
disease.

Methods

The conference was created by the
American Thoracic Society Respiratory Cell
Molecular Biology Assembly Working
Group on Proteomics and Metabolomics.
The goal of the workshop was to convene for
the first time relevant experts in lung
proteomics and metabolomics to discuss
specific challenges that are unique to the
lung. The main objectives were to:

d Identify existing and emerging
technologies in metabolomics and
proteomics as applied to the study of the
lung.

d Understand the inherent challenges
associated with metabolomics and
proteomics, with a specific focus on
challenges associated with lung biological
specimens.

d Identify informatics approaches and
online databases relating to
metabolomics and proteomics.

d Discuss systems biology approaches,
including integrative platforms across
databases that can be applied to
metabolomic and proteomic studies.

d Discuss the potential clinical applications
of proteomics and metabolomics for
lung-related disorders.

The conference included combined
sessions relevant to proteomics and
metabolomics, and breakout sessions
highlighting challenges specific to each. The
conference report is a summation of the
presentations and discussions. Potential
conflicts of interest were disclosed and
managed in accordance with the policies
and procedures of the American Thoracic
Society.

Issues Common to Proteomics
and Metabolomics

Unique Challenges of Lung
Biospecimens
The lung has several features that make
metabolomics and proteomics both a
unique opportunity and challenge
compared with other organs and blood. One
unique quality is the lung’s exposure to the
environment (air pollution, pollen, etc.);
however, as part of an environmental
defense, the lung is covered by a complex
epithelial defensive barrier and epithelial
lining fluid (ELF) consisting of both
solute and gel phases containing mucus and
lipids (e.g., surfactants), along with
inflammatory cells. These features make
sample preparation challenging. The
collection of lung-specific specimens
includes tissue biopsy or pathology
specimens, transbronchial biopsies,
bronchoalveolar lavage fluid (BALF), and
airway brushings. The most frequent lung
sampling technique is bronchoscopy to
obtain BALF and/or bronchial biopsy. Of
note, as in all tissues, biopsies lead to blood
content contamination that may influence
sample analysis. This may be less of an
issue for airway wall biopsies. BALF is
typically performed using normal saline
(0.9% NaCl), often requiring techniques
to remove the high salt content.
Furthermore, BALF dilutes the ELF up to
100-fold, and must be taken into account
when performing quantitative analysis.
Dilution can be minimized by using a
single-cycle lavage and corrected by
normalizing to urea (7, 8). ELF is rich in
plasma-derived proteins (albumin,
transferrin, etc.), along with proteins
specifically expressed by airway cells, such
as surfactant proteins and club cell
secretory protein (9).

Other less frequently used biosamples
for lung investigations include exhaled
breath condensate and epithelial brushes or
biopsies. The former is limited by difficulty
in standardization and dilute samples, and
the latter by bleeding and invasiveness of
procedures. Sputum is another lung sample
with its own unique challenges, such as
viscosity and different layers (gel and sol).
To minimize variance and maximize
reproducibility, we have included in this
document recommended sample protocols
for lung and other biofluid samples
(Table 1).

0

50

100

150

200

250

300

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 

N
um

be
r 

of
 P

ub
lic

at
io

ns
 

Year 

Figure 2. Temporal increase in the number of lung proteomics and metabolomics publications in the
PubMed database. Squares represent proteomic publications; triangles represent metabolomic
publications.
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Table 1. Sample preparation for proteomics and metabolomics studies*

Sample Type Preparation (Recommended) Comments

BALF Centrifuge to remove cells and debris (8003 g at
48C for 10 min); remove supernatant. Aliquot
and freeze (2808C) until the time of assay.

Recommend first cycle lavage; correct for
dilution (typically 1003) with urea ratio
(e.g., BALF:plasma); consider buffer
exchange to remove salt (0.9% or
154 mM NaCl) and methanol or acetone
precipitation for protein separation.

Sputum (see https://www2.cscc.
unc.edu/spiromics/system/files/
documents/sputmcmtmop5sputum
collectionandprocessing09172014_0.pdf
for full protocol)

Blow nose, gargle, and rinse mouth using room
temperature water; separate sputum plugs;
weigh and measure 0.3 g of whole sputum
sample and consider solubilizing an aliquot
with DTT (0.1%) or 6 M guanidine reduction
buffers to solubilize.

Healthy subject will likely need nebulization
with hypertonic (3%) saline

Exhaled breath condensate (60) Consider commercial equipment, such as
Ecoscreen or RTube; collect during tidal
breathing using a nose clip and a saliva trap;
define cooling temperature and collection time
(10 min is generally sufficient to obtain 1–2 ml
of sample and is well tolerated by patients); use
inert material for condenser; do not use resistor
and do not use filter between the subject and
the condenser (61).

For proteomics, it is difficult to standardize;
very dilute specimens (,1 µg/ml protein).

Lung biopsy or transbronchial biopsy After obtaining samples they are snap frozen in
liquid nitrogen; 1–5 g of tissue is processed
using a bead-based tissue maceration method
(such as a genogrinder). Once this is done, one
can use the usual preparation metabolomics
methods for NMR, GC-MS, or LC-MS as used
for liquid samples.

Bronchial wall brushings Again, after obtaining samples they are snap
frozen in liquid nitrogen. It is best if 1–5 g or the
equivalent of 10,000 cells are processed using
a bead-based tissue maceration method (such
as a genogrinder). Once this is done, one can
use the usual preparation metabolomics
methods for NMR, GC-MS or LC-MS as used
for liquid samples.

The sample can be placed in saline and
then centrifuged, snap frozen and then
processed.

Plasma Collect blood by direct venipuncture, if possible,
into a vacutainer tube containing either EDTA
or sodium heparin. Immediately invert the
tube several times to ensure mixture with
anticoagulant. Within 30 min of blood
collection, centrifuge balanced tubes (15 min at
1,3003 g) with no brake to ensure proper
plasma separation. Refrigeration before or
during centrifugation is recommended for
metabolomic studies but not recommended for
proteomic studies. After centrifugation, the
blood should be separated into 3 visible layers,
the upper layer is generally clear and pale
yellow in color and is the plasma. The second,
thin, whitish layer sits at the interface between
the plasma and the red blood cells, and is
called the buffy coat. The third or bottom layer
is dark red and consists of red blood cells.
Carefully collect the plasma layer, aliquot and
freeze (2808C) in cryovial.

For proteomics, can consider protease
inhibitors in blood draw tube (e.g., BD
P100; BD Biosciences, San Jose, CA); in
general this is not recommended for all
tubes. Recommend heparin or EDTA (not
for NMR), not citrate-containing tubes,
for metabolomics studies.

Serum Collect blood by direct venipuncture, if possible,
into a vacutainer tube (no additive). Allow the
blood to clot at room temperature for at least
30 minutes then centrifuge the balanced
vacutainer tube(s) (15 min at 1,3003 g) with
low brake. Remove the serum, being careful not
to disturb the clot at the bottom of the tube.
Aliquot and freeze serum (2808C) in cryovial.

For proteomics, consider the addition of
protease inhibitors in blood draw tube
(e.g., BD P100); in general, this is not
recommended for all tubes and is not
recommended for metabolomics.

(Continued)
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Invasive lung samples are not often
readily accessible, so blood (whole blood,
serum, plasma), urine, and isolated cells
(e.g., airway epithelial brushings or alveolar
macrophages) are often used to indirectly study
the lung proteome and metabolome. Although
these are more readily accessible, their relevance
to lung disease is often less clear.

Shared Resources
Dr. Shankar Subramaniam (University
of California, San Diego, CA) discussed
the challenges of shared databases,
repositories, and software for metabolomics
studies. The National Institutes of
Health (NIH, Bethesda, MD) supports
resources to organize and store national
and international metabolomics data and
analysis tools through the Metabolomics
Workbench program (http://www.
metabolomicsworkbench.org//
nihmetabolomics/index.html), housed
and managed by the University of
California San Diego Supercomputer
Center. In addition, the site is a resource for
analytical standards important for
confirming metabolite identities and lipid
map classifications. On the horizon is the
expected publication of the NIH-sponsored
Ring Trial in Metabolomics, in which
several metabolomics laboratories across
the United States assayed technical
replicates of samples to assess standardized
processes, analyte detection, and data
reproducibility across centers.

Data Integrity
Dr. Arthur Moseley (Duke University,
Durham, NC) discussed the importance of

project-to-project and laboratory-to-
laboratory reproducibility in proteomics
and metabolomics. Although not unique to
the lung, the lack of standardization in
proteomics and metabolomics analyses
presents unique challenges to data integrity.
There are strategies to improve
standardization. As an example, the plate-
based targeted metabolomic platform
(Biocrates Absolute IDQ p180; Innsbruck,
Tirol, Austria) uses internal standards and
calibration curves for precise metabolite
quantitation, and has been validated across
all major MS vendors. Similarly, quality
control pools containing a mixture of study-
specific samples and reference standards
(e.g., human plasma from Golden West
Biologicals, Inc., Temecula, CA) can be
used to measure intra- and interstudy
reproducibility. These approaches can help
to overcome batch effects, and should
ensure that identical results can be achieved
across laboratories and instrument platforms.
However, ultimately, the harmonization of
analytical and quality control methods will
improve and ensure metabolomic and
proteomic data integrity (10, 11).

Statistical Approaches
Careful analysis of complex data is essential
to fully capture all potential opportunities to
explore biological systems and disease.
Although proteomics and metabolomics
enable accurate detection and quantification
in an unbiased manner, there are some
unique statistical challenges in assessing
these data. Dr. Katerina Kechris (University
of Colorado, Denver, CO) discussed how
untargeted MS, by definition, does not

include chemical standards and, therefore,
measurements reflect relative abundances.
When studies are completed over multiple
experiments, there is frequently drift in
retention time (RT) and sensitivity requiring
batch correction by using methods, such as
Combat or Remove Unwanted Variation
(12–14). Metabolites, in particular, tend to
be highly correlated within a class. This
requires class analysis or the use of
dimension reduction through principal
component analysis, partial least squares
projection to latent structures, clustering,
or other multivariate methods (15).
Correction for multiple comparisons using
methods, such as the false discovery rate,
is essential, because many proteins
and metabolites can be simultaneously
tested (16). In addition, proteins and
metabolites are most often not normally
distributed and require data
transformations (e.g., logarithmic) to
normalize the data. It is also important to
adjust for covariates, such as age, sex,
and smoking history, that can influence
metabolite and protein expression.
Finally, unique challenges include handling
missing values, mass spectra acquisition,
identification, and multiple sources of
variability (17).

Current State of Metabolomics
of Lung Diseases

The fundamental premise in metabolomics
is that changes, whether physiological or
pathological, cause alterations of the
metabolome that are detected as variations

Table 1. (Continued )

Sample Type Preparation (Recommended) Comments

Whole blood (62) Collect blood by direct venipuncture, if possible,
into a vacutainer tube containing sodium
heparin. Immediately place tube into an ice
water bath, aliquot into tubes and flash freeze
in liquid nitrogen as soon as possible but
preferably within 30 minutes of collection. Store
(2808C or in liquid nitrogen) until the time of
assay.

Urine (63) Collect fresh urine via clean catch, centrifuge
(1,000–3,0003 g for 5 min at 48C) to precipitate
the cells. Collect the supernatant, aliquot and
freeze (2808C) until the time of assay.

For metabolomics, consider the addition of
sodium azide to the collection cup to
retard bacterial growth.

Definition of abbreviations: BALF = bronchoalveolar lavage fluid; DTT = dithiothreitol; EDTA = ethylenediaminetetraacetic acid; GC = gas chromatography;
LC = liquid chromatography; MS =mass spectroscopy; NMR = nuclear magnetic resonance.
*Sample handling and storage: transport samples on ice, avoid letting samples warm to room temperature, aliquot in useable sample volumes to avoid future
freeze and thaw cycles, freeze immediately (2808C) until the time of assay. For long-term storage (.6 mo), consider storing samples in liquid nitrogen.
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in metabolite concentrations. Metabolomics
studies are generally based on either of two
approaches: a global profiling strategy
(i.e., untargeted metabolomics) or a selective
measurement strategy (targeted
metabolomics). The untargeted method is

useful as an initial evaluation to shortlist key
metabolites with distinct alterations. This is
especially helpful if there is no prior
knowledge about the metabolic disturbances
involved. On the other hand, targeted
metabolomics is useful for measuring

specific metabolites of particular relevance
to the condition being researched.

Most published metabolomic studies
have focused on three major lung diseases:
acute respiratory distress syndrome
(ARDS), asthma, and chronic obstructive

Table 2. Metabolomics biomarker publications in acute respiratory distress syndrome, chronic obstructive pulmonary disease, and
asthma

Year Disease Metabolic Profiling Approach Candidate Biomarkers Reference

1998 ARDS Untargeted GC-MS exhaled
breath

Isoprene 64

2011 ARDS NMR of Plasma Sphingomyelin 65
2013 ARDS Untargeted LC-MS BAL Higher levels of many amino acids and glycolysis products; lower

lipid intermediates
66

2014 ARDS GC-MS of exhaled breath Octane, acetaldehyde, 3-methylheptane 67
2017 ARDS GC-MS of undiluted pulmonary

edema
Subphenotype with widespread metabolic differences 68

2010 COPD NMR of urine Trigonelline, hippurate and formate 69
2012 COPD Targeted LC-MS/MS of plasma Glutamine, aspartate and arginine 70
2012 COPD NMR and LC-MS of serum Branched-chain amino acids, glutamine and 3-methylhistidine 71
2013 COPD NMR of serum and urine Branched-chain amino acids, glycerol-phosphocholine,

1-methylnicotinamide, creatinine, lactate, acetate, ketone
bodies, carnosine, m-hydroxyphenylacetate,
phenylacetyglycine, pyruvate and a-ketoglutarate

72

2013 COPD NMR of EBC Acetate and 1-methylimidazole 73
2013 COPD LC-MS of plasma Ceramides 74
2015 COPD LC-MS of plasma Sphingolipids 75
2016 COPD LC-MS of serum Myoinositol, glycerophopshoinositol, fumarate, cysteinesulfonic

acid, a modified version of fibrinogen peptide B
76

2009 Asthma MS Adenosine 77
2011 Asthma NMR Succinate 78
2011 Asthma NMR Threonine 78
2011 Asthma NMR Trans-aconitate 78
2012 Asthma LC-MS Urocanic acid 79
2012 Asthma MS Adenosine 80
2013 Asthma NMR Formate 81
2013 Asthma NMR Methanol 81
2013 Asthma NMR Arginine 81
2013 Asthma LC-MS Acetate 81
2013 Asthma GC-MS 1,4-dichloro-benzene 82
2013 Asthma GC-MS 1,4-dichloro-benzene 83
2013 Asthma GC-MS 2,4-dimethyl-1-heptene 82
2014 Asthma NMR Formate 84
2014 Asthma GC-MS Hippurate 85
2014 Asthma NMR Hippurate 84
2014 Asthma NMR Methanol 84
2014 Asthma GC-MS Alanine 85
2014 Asthma NMR Alanine 84
2014 Asthma NMR Arginine 84
2014 Asthma NMR Phenylalanine 84
2014 Asthma GC-MS Threonine 85
2014 Asthma NMR Urocanic acid 84
2014 Asthma NMR Trans-aconitate 85
2014 Asthma NMR Adenosine 84
2014 Asthma GC-MS Acetate 85
2014 Asthma GC-MS Acetate 86
2014 Asthma NMR Acetate 84
2014 Asthma GC-MS 2,4-dimethyl-1-heptene 86
2015 Asthma GC-MS Succinate 87
2015 Asthma GC-MS Phenylalanine 87
2015 Asthma MS Adenosine 88
2016 Asthma LC-MS Threonine 89

Definition of abbreviations: ARDS=acute respiratory distress syndrome; BAL=bronchoalveolar lavage; COPD=chronic obstructive pulmonary disease; EBC=
exhaled breath condensate; GC=gas chromatography; LC= liquid chromatography; MS=mass spectroscopy; NMR=nuclear magnetic resonance.
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pulmonary disease (COPD), as reviewed by
Dr. Kathleen Stringer (University of
Michigan, Ann Arbor, MI) and summarized
in Table 2. These illnesses are notoriously
heterogeneous, and an absence of predictive
and prognostic biomarkers has stalled the
identification of new drug targets and
hindered the implementation of precision
medicine. Recent studies demonstrate that
metabolomics enhances the diagnostic
accuracy of ARDS, COPD, and asthma

(18–21). Metabolomics is particularly
useful in the challenging area of respiratory
disease endotyping and phenotyping (20),
and in the discrimination of individuals
with differing levels of severity and
exacerbations, allowing for more targeted
treatment regimens (20, 21). These studies
highlight the potential of metabolomics to
“deep phenotype” pulmonary diseases.
However, more work is needed to confirm
and validate links between metabolic

changes, clinical phenotypes, and biological
processes to further understanding about
disease pathogenesis, and ultimately to
drive drug discovery and achieve precision
pulmonary medicine.

Challenges in Metabolomics
Major challenges in metabolomics include
data processing, identification and validation
of metabolites, and data visualization.
Importantly, because no one analytical
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electrospray ionization, and the resulting positive and negative ions are detected by MS. This results in a mass-to-charge ratio (m/z) versus relative peak
intensity graphical representation of the data. More details about the advantages and disadvantage of each approach can be found in Table 2. By K. Murray
(Kkmurray) (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.5-2.0-
1.0 (http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], via Wikimedia Commons.
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platform captures the entire metabolome,
there are a number of analytical platforms
that can be used (Figure 3), each of which
has its own advantages and disadvantages
(Table 3). An overall consensus was a call for
greater synchrony of research methods to
enable development of “big data” resources
shared across institutions that can be applied
to lung diseases.

Metabolite Identification
MS data are often reported as features,
which represent analytes with discrete mass-
to-charge ratios (m/z) and RTs. Dr. Richard
Reisdorph (University of Colorado, Denver,
CO) discussed the importance of metabolite
identification, rather than a simple
description of these features, as many
represent breakdown products of known
metabolites. Differential features are
identified, and extensive follow-up work is
needed to identify the specific compound.

This is particularly challenging for lipids, as
large numbers of lipids have very similar or
identical m/z and RT. Gas chromatography
annotation libraries are more developed
than liquid chromatography (LC) libraries,
but, to date, a standard metabolite library
for untargeted LC– tandem MS (MS/MS) is
not readily available for all researchers. This
limits downstream pathway analysis, which
can only be as good as the annotation of
known metabolites. To move the field
forward, a description of the annotation
confidence is important, ranging from low
confidence (e.g., mass of analyte matched to
a database) to high (MS/MS spectrum
matches to an MS/MS library) to highest
“gold standard” (confirmed with purchased
standards, RT, and MS/MS spectrum). To
this end, there is a need for analytical
reference standards for metabolomics
(http://www.metabolomicsworkbench.org/
standards/index.php). Data validation, as

reviewed by Dr. Nichole Reisdorph
(University of Colorado, Denver, CO), with
a targeted assay in an independent
population is the gold standard, but
requires a substantial investment of time to
confirm metabolite identifications.

Data Processing
Data processing needs, which differ
significantly for nuclear magnetic
resonance (NMR) spectroscopy and MS
approaches, were discussed by Dr. Dean
Jones (Emory University, Atlanta, GA).
The analysis of NMR spectra can be
challenging due to peak overlap, but analysis
can be optimized with the use of software
that permits the identification and
quantification of metabolites (6). Spectral
peak overlap is more readily deconvoluted
for LC-MS than for NMR. For both
sources of data, chemometric methods can
be used in which peak or feature signals

Table 3. Examples of strengths and weaknesses of nuclear magnetic resonance and MS methods used in metabolomics studies (6, 32)

Technique Strengths Weaknesses

NMR
Nondestructive technique (several analyses can be
conducted on the same samples)

Low sensitivity (only metabolites with µM concentrations can
be reliably detected)

Can be done with minimal sample preparation (addition of
deuterated solvent and a buffer)

Overlap in peaks and high chemical degeneracy (different
metabolites have resonances in the same spectral region)

Versatility for analyzing metabolites in biofluids, tissues or
in vivo

Reproducible and repeatable
Routinely quantitative
Detects small molecular weight (,100 Da) compounds
that LC-MS may miss

GC-MS
High-resolution capacity Thermostable and volatile and nonpolar metabolites may

require derivatization
High spectral resolution High molecular weight analytes
Very sensitive Low reproducibility (within and across labs)
Low limit of detection Fragmentation in MS
Required technical skill Extensive sample preparation steps
High mass accuracy to detect compounds Not routinely quantitative
Reproducible retention time Possible variation due to sample preparation
Highly developed compound libraries Matrix effect
Linear dynamic range Compound degradation (high temperature)
High separation efficiency Destructive to sample

LC-MS
Short separation time Ideal for nonvolatile compounds
High resolution High solvent consumption and lower separation power
Very sensitive Low reproducibility (within and across labs)
Reasonable robustness Ionization of metabolites
Selective Not routinely quantitative
High mass accuracy to detect compounds Lower retention time reproducibility with different

chromatography systems or columns versus GC-MS
Simple sample preparation Destructive to sample
Detects a wider range of chemical classes of compounds
than GC-MS

No universal compound library

Can use a small sample volume (z100 µl)

Definition of abbreviations: GC = gas chromatography; LC = liquid chromatography; MS =mass spectroscopy; NMR= nuclear magnetic resonance.
Adapted from Reference 32.
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represent signatures of biologic
response without knowledge of or the
quantification of specific compounds,
as a means of an initial survey of the data
(22). After extraction of signals for
individual metabolites, many of the
downstream methods for NMR
spectroscopy data and MS metabolomics
data are the same. In general, these involve
common univariate and multivariate
biostatistical methods, as well as a range
of bioinformatics approaches with data
clustering and correlation analyses, and
also encompassing knowledgebase
searching and integration of multi-omics
data (23). Tools available for metabolite
identification, spectral analysis, and the
assessment of data integrity and data
interpretation are summarized in Tables
4–6, respectively, including available
reference standards, through the
Metabolomics Workbench website (http://
www.metabolomicsworkbench.org/).

Mapping, Modeling, and Visualization
of Metabolomics Data
Dr. Alla Karnovsky (University of Michigan
Ann Arbor, MI) highlighted the recent
advances in analytical technologies, as
metabolomic datasets are becoming
increasingly large and complex (6). With
respect to lung health and disease, it is
important to put the observed metabolite
changes into biological and disease context.
A growing number of tools and resources
for pathway mapping and enrichment analysis
of metabolomics data, as well as data-driven

network analysis methods and software, are
being developed, including multiple open
source options, such as ConceptMetab (24),
Metscape (25), and metabolite set enrichment
analysis (26) (Table 6).

Lipidomics
Dr. Oliver Fiehn by (University of
California–Davis, Davis, CA) discussed the
rapidly expanding field of lipidomics. Peak
selection and identification are particularly
challenging in lipidomics. The open-source
software, MS-DIAL (http://prime.psc.riken.
jp/Metabolomics_Software/MS-DIAL/index2.
html; Table 5), de-convolutes overlapping
spectra and aids in the identification and
quantification of compounds (Table 4) (27).
For reversed-phase LC-MS lipid
identification, MS-DIAL uses data
converted to an axon binary file format and
the Lipidblast library (28), a computer-
generated in silico MS/MS spectral library
of 26 lipid compound classes, including
phospholipids, glycerolipids, bacterial
lipoglycans, and plant glycolipids.

Cutting-Edge Metabolomics

Advanced Imaging Using
MS Technology
Dr. Richard Caprioli (Vanderbilt University,
Nashville, TN) described how matrix-
assisted laser desorption/ionization imaging
MS produces molecular maps of peptides,
proteins, lipids, and metabolites present
in intact tissue sections (29, 30). This
technique employs desorption of molecules

by direct laser irradiation to map the
location of specific molecules from fresh-
frozen and formalin-fixed tissue sections
without the need of target-specific reagents,
such as antibodies. Molecular images of this
nature are produced in specific m/z values,
or ranges of values. Each specimen gives
rise to many hundreds of specific molecular
images from a single raster of the tissue. In
a complementary approach, where only
discrete areas within the tissue are of
interest, a histology-directed approach that
integrates MS and microscopy has been
developed. Thus, mass spectra are collected
from only selected areas of cells within the
tissue after laser ablation and analysis.
Clinically relevant studies include advanced
diabetic nephropathy involving both
proteins and lipids (29). In addition, imaging
MS has been applied to drug targeting and
metabolic studies, both in specific organs
and also in intact whole animal sections after
drug administration. These techniques,
though promising, have yet to be applied to
the lung outside of lung cancer.

The Future of Lung
Metabolomics

Dr. Brent Winston (University of Calgary,
Calgary, AB, Canada) discussed the key
strategies for advancing lung metabolomics.
Data sharing and adopting standards of
practice (SOPs) are key for future studies. In
addition, a focus on targeted mechanistic
studies will enable the field to move beyond
hypothesis–agnostic discovery science. The

Table 4. Publicly available tools for metabolite identification*

Program Website Description Reference

MetLin https://metlin.scripps.edu/index.php METLIN includes .900,000 molecules ranging from lipids, steroids,
plant and bacteria metabolites, small peptides, carbohydrates,
exogenous drugs/metabolites, central carbon metabolites, and
toxicants. Over 14,000 metabolites have been individually analyzed
and another 200,000 have in silico tandem mass spectroscopy data.

90

HMDB http://www.hmdb.ca/ The Human Metabolome Database (HMDB) contains detailed
information about small molecule metabolites found in the human
body. It is designed to contain or link three kinds of data: (1)
chemical data; (2) clinical data; and (3) molecular biology/
biochemistry data. The database contains .42,000 metabolite
entries, including chemical/clinical/enzymatic data, and links to
proteins and other databases (KEGG, PubChem, MetaCyc, ChEBI,
PDB, UniProt, and GenBank) and a variety of structure and pathway
viewing applets. The HMDB database supports extensive text,
sequence, chemical structure, and relational query searches. Four
additional databases, DrugBank, T3DB, SMPDB, and FooDB, are
also part of the HMDB suite of databases.

91

*Information about instrument specific software packages can be found at each respective manufacturer’s website.
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Table 5. Publicly available and commercial software/tools for spectral processing and analysis for metabolomics*

Program Website Description Reference

LC-MS
XMSanalyzer http://clinicalmetabolomics.org/init/default/index xMSanalyzer is a package of utilities for

data extraction, quality control
assessment, detection of overlapping
and unique metabolites in multiple
datasets, and batch annotation of
metabolites. The program was designed
to integrate with existing packages, such
as apLCMS and XCMS, but the
framework can also be used to enhance
data extraction for other LC-MS data
software.

92

Hybrid apLCMS http://web1.sph.emory.edu/aplcms/ The R package apLCMS is designed for the
processing of LC-MS based
metabolomics data. It starts with a group
of LC-MS files in the same folder, and
generates a table with features in the
rows and intensities in the columns. Data
can be analyzed using unsupervised
methods (de novo peak detection from
the data) or hybrid analysis, combines
de novo peak detection with existing
knowledge.

93

Camera http://www.bioconductor.org/packages/release/
bioc/html/camera.html

Collection of annotation related methods
for MS data.

94

MS-DIAL http://prime.psc.riken.jp/Metabolomics_Software/
MS-DIAL/index2.html

Deconvolutes mass spectra. Identification
and quantification of small molecules.

27

XCMS https://metlin.scripps.edu/xcms/ The XCMS software reads and processes
LC-MS data stored in netcdf, mzXML,
mzData, and mzML files. It provides
methods for feature detection, nonlinear
retention time alignment, visualization,
relative quantization and statistics.
XCMS is capable of simultaneously
preprocessing, analyzing, and visualizing
the raw data from hundreds of samples.
XCMS is freely available under an open-
source license.

95

MetSign http://metaopen.sourceforge.net/metsign.html For LC-MS–based metabolomics data,
MetSign provides a set of data
preprocessing algorithms for peak
detection and peak list alignment. For
spectrum deconvolution, peak picking is
achieved at the selected ion
chromatogram (XIC) level.

96

MZmine 2 http://mzmine.github.io/ MZmine 2 is an open-source software for
MS data processing, with the main focus
on LC-MS data, with the goal to provide
a user-friendly, flexible and easily
extendable software with a complete set
of modules covering the entire LC-MS
data analysis workflow.

97

MAIT https://www.bioconductor.org/packages/release/
bioc/html/mait.html

The MAIT package contains functions to
perform end-to-end statistical analysis of
LC-MS Metabolomic Data. Special
emphasis is put on peak annotation and
in modular function design of the
functions.

98

(Continued)
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Table 5. (Continued )

Program Website Description Reference

GC-MS
Metabolite Detector http://metabolitedetector.tu-bs.de/ Metabolite Detector is a QT4 based

software package for the analysis of
GC-MS based metabolomics data. The
software is especially intended for the
analysis of high resolution GC-MS
chromatograms which accumulate
during high throughput based
metabolomics experiments. For this
purpose, Metabolite Detector features a
nearly fully automated data analysis
pipeline starting from the raw GC-MS
data and ending in a principal
component analysis. Currently,
Metabolite Detector is able to import
GC-MS data in NetCDF and FastFlight
format.

99

NMR
Automics http://www.softpedia.com/get/science-cad/

automics.shtml
Automics is a highly integrated platform

for NMR-based metabonomics or
metabolomics spectral processing and
data analysis. It is targeted to aid
researchers for processing high
dimensional NMR spectroscopic data.

100

Bayesil http://bayesil.ca/ Bayesil is a web system that automatically
identifies and quantifies metabolites
using 1D 1H NMR spectra of ultrafiltered
plasma, serum or cerebrospinal fluid.
Bayesil performs all spectral processing
steps, then deconvolutes the resulting
NMR spectrum using a reference
spectral library, which here contains the
signatures of more than 60 metabolites.
This deconvolution process determines
both the identity and quantity of the
compounds in the biofluid mixture.

101

Chenomx http://www.chenomx.com/software/ A commercial software, Chenomx NMR
Suite is an integrated set of tools for
identifying and quantifying metabolites in
NMR spectra.

102

FOCUS http://www.urr.cat/focus/ FOCUS is a complete workflow for
processing NMR metabolomics data that
provides efficient methodological
advances both on peak alignment and
metabolite identification.

103

Speaq https://cran.r-project.org/web/packages/speaq/
index.html

Suite of informatics tools for the
quantitative analysis of NMR
metabolomic profile data. The core of the
processing cascade is a peak alignment
algorithm, called hierarchical CluPA. The
algorithm aligns a target spectrum to the
reference spectrum.

104

MetaboLab http://metabolab.uk/ MetaboLab is a software package for NMR
processing written in MATLAB. It
contains of a series of processing
algorithms for 1D, 2D and 3D
processing, including apodization
functions, linear prediction, Fourier
transformation, and baseline correction.
It also includes routines for wavelet
denoising of spectra. A simple interface
is available to set up processing
parameters. The current version
supports Bruker and Varian file formats.

105

(Continued)
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overall objectives of “omics” technology in
human disease (31) are to:

d Facilitate subcategorizing into specific
endotypes to target therapeutic
interventions

d Improve triage decisions
d Provide a means to follow response to

therapy
d Establish new therapeutic targets
d Provide ways to identify patients

amenable to tailored therapies

The use of existing samples from major
lung-related studies is highly desirable, but
is only possible if samples are collected with
proper SOPs and appropriate storage of
samples in an internationally recognized
fashion (32). This will require cooperation
from major funding agencies for all phase 1,
2, and 3 studies involving the respiratory

system. For example, the Precision
Medicine Initiative (https://ghr.nlm.nih.
gov/primer/precisionmedicine/initiative)
and the Million Veteran Program (http://
www.research.va.gov/mvp/) plan to collect
samples from one million subjects, each
using uniform methodology. To do this
well would include the development and
harmonization of SOPs, storage methods,
sample annotation, data sharing, and
exploration of age-related storage material
degradation (33, 34).

Current State of Proteomics in
Lung Diseases

Proteomic Approaches in Studying
Lung Disease
MS has revolutionized the study of proteins,
as it allows the measurement of hundreds to

thousands of proteins in complex systems in
a very precise and reproducible manner. In
the first presentation of the proteomics
breakout session, Dr. Chris Wendt
(University of Minnesota, Minneapolis,
MN) discussed the current state of
proteomics in lung disease, specifically
focusing on ARDS, COPD, and idiopathic
pulmonary fibrosis (Table 7). Many of
these studies used two-dimensional gel
electrophoresis and/or a combination of LC
and MS, common techniques for the
identification of disease biomarkers and
disease-related signaling pathways using
gene ontology analysis (35–39). Specific
advances and resources in databases,
repositories, methods, and protocols
have greatly advanced the field of
proteomics (Table 8); however, challenges
remain.

Table 5. (Continued )

Program Website Description Reference

rNMR http://rnmr.nmrfam.wisc.edu/ rNMR is an open source software package
for visualizing and interpreting one and
two-dimensional NMR data. rNMR is
specifically designed for high-throughput
assignment and quantification of small
molecules. As a result, rNMR supports
extensive batch manipulation of plotting
parameters and has numerous tools for
expediting repetitive resonance
assignment and quantification tasks.

106

MetabMiner http://wishart.biology.ualberta.ca/metabominer/ Easy-to-use software tool, MetaboMiner,
aids in rapid and efficient metabolite
identification from complex mixtures
using 2D NMR spectroscopy.

107

BATMAN http://batman.r-forge.r-project.org/ BATMAN is an R package for estimating
metabolite concentrations from NMR
spectral data using a specialized MCMC
algorithm. It deconvolutes peaks from 1D
NMR spectra, automatically assigns
them to specific metabolites from a
target list and obtains concentration
estimates. Uses Bayesian analysis and a
MCMC algorithm to obtain concentration
estimates with reduced error.

108

MetaboHunter http://www.nrcbioinformatics.ca/metabohunter/
about.php

MetaboHunter is a web server application
for semiautomatic assignment of 1D
NMR spectra of metabolites.
MetaboHunter provides tools for
metabolite identification based on
spectra or peak lists with three different
search methods and with possibility for
peak drift in a user defined spectral
range. The assignment is performed by
comparison with two major publically
available databases (HMDB, MMCD) of
NMR metabolite standard
measurements.

109

Definition of abbreviations: 1D–3D = one to three dimensional; CluPA = cluster-based peak alignment; GC = gas chromatography; LC = liquid
chromatography; MCMC=Markov chain Monte Carlo; MS =mass spectroscopy; NMR = nuclear magnetic resonance.
*Information about instrument specific software packages can be found at each respective manufacturer’s website.
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Table 6. Publicly available and commercial software/tools for analysis and interpretation of metabolomics data*

Program Website Description Reference

Metaboanalyst http://www.metaboanalyst.ca/ A comprehensive tool suite for metabolomics data
analysis. There are additional tools embedded with
MetaboAnalyst including MSEA.

110

MetScape for
Cytoscape

http://metscape.ncibi.org/ MetScape is a plugin for Cytoscape. It provides a
bioinformatics framework for the visualization and
interpretation of metabolomic and expression
profiling data in the context of human metabolism. It
allows users to build and analyze networks of genes
and compounds, identify enriched pathways from
expression profiling data, and visualize changes in
metabolite data. Integrates data from KEGG and
EHMN.

25

ConceptMetab http://conceptmetab.med.umich.edu/ ConceptMetab, is a tool for mapping and exploring the
relationships among 16,069 biologically defined
metabolite sets developed from Gene Ontology,
KEGG and Medical Subject Headings. It uses both
KEGG and PubChem compound identifiers, and
based on statistical tests for association.

24

Metabolome
Express

https://www.metabolome-express.org/ MetabolomeExpress houses both private and public
uncurated repositories to process, interpret and
share GC-MS metabolomics datasets, as well as a
quality-controlled database of highly annotated
metabolite response statistics submitted by
MetabolomeExpress users. The quality-controlled
database of metabolite response statistics can be
queried to find relevant experiments using tools in
the Database Explorer and examined in detail using
the in-built Experiment Explorer which includes
integrated tools for raw data visualization,
processing and statistical analysis.

111

Astream http://www.urr.cat/astream/astream.html AStream is an R statistical software package for the
curation and identification of feature peaks
extracted from LC-MS metabolomics data.
Compounds are identified and subsequently linked
to metabolite databases.

112

MetExplore http://metexplore.toulouse.inra.fr/joomla3/
index.php

MetExplore is a free academic service that enables: 113
Importing/storing/sharing genome scale metabolic
networks

Mapping polyomics data
Pathway enrichment
Visualizing networks
Mining networks based on data and network
structure

Computing fluxes
IMPaLA http://impala.molgen.mpg.de/ Pathway overrepresentation and enrichment analysis

with expression and/or metabolite data. 114
PaintOmics http://bioinfo.cipf.es/paintomics/ Paintomics is a web tool for the integration and

visualization of transcriptomics and metabolomics
data.

115

MAVEN http://genomics-pubs.princeton.edu/mzroll/
index.php

The aim of this software package is to reduce
complexity of metabolomics analysis through an
interface that enables exploring and validating
metabolomics data. The program features multifile
chromatographic aligner, peak-feature detector,
isotope and adduct calculator, formula predictor,
pathway visualizer, and isotopic flux animator. Data
from both triple quadropole and full spectrum
instruments is supported.

116

MAIT https://www.bioconductor.org/packages/
release/bioc/html/MAIT.html

The MAIT package contains functions to perform end-
to-end statistical analysis of LC-MS metabolomics
data. Special emphasis is put on peak annotation
and in modular function design of the functions.

98
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Challenges in Quantitative
Proteomics
Challenges remain in the ability to
accurately quantify changes in protein
abundance. Both label and label-free
strategies exist for proteome quantitation
(Table 9). Dr. Alexey Nesvizhskii
(University of Michigan, Ann Arbor, MI)
discussed the application of label-free
quantitative methods, including software
tools for data-dependent acquisition with
quantitation by spectral counting or ion
abundance (e.g., QSpec/QProt) (40, 41), as
well as data-independent acquisition (DIA;
e.g., DIA-Umpire) (42, 43) (Figure 4).
Spectral counting is defined as the number
of MS/MS sequencing attempts made on a
precursor (i.e., intact peptide) during a
single LC-MS/MS analysis, whereas
intensity-based quantitation is the
measurement of the area under the curve of
each precursor in a sample. Intensity-based
methods have greater accuracy, but both
methods suffer from missing data across
replicate analyses. The missing data
problem can be mostly eliminated by
aligning (or matching) of precursors across
batched analyses (44).

Data-Independent Methods for
Quantitative Proteomics
DIA methods use “MS2-based”
quantitation of the ions that are produced
by MS/MS fragmentation (45) and can
have greater selectivity (and greater
signal-to-noise) than precursor/MS1-
based quantitation. DIA also allows for
matching of each sample to an external
library of MS/MS spectra, thus largely
eliminating the missing data problem.
DIA has shown promise for analysis of
biofluids, including BALF (46). DIA-
Umpire software can furthermore extract
MS/MS spectra for peptide/protein
identification using conventional
database searching (42, 43).

Quantifying the Secretome Proteome
LC-MS/MS allows the identification and
quantification of hundreds of proteins in
cellular secretions (secretomes) of airway
cells. This includes the analysis of airway
cells in vitro, which allows for the
identification of key mechanistic
biochemical insights, and thus plays a
pivotal role in translational lung research.
However, there remain challenges in
quantifying the secretome, as discussed by

Dr. Kristy Brown (Children’s National
Health System, Washington, D.C.) and Dr.
Mehmet Kesimer (University of North
Carolina–Chapel Hill, Chapel Hill, NC).

Dr. Brown studies the altered
secretome of human bronchial epithelial
cells (HBECs) obtained from patients with
cystic fibrosis (47, 48). Here, she introduced
the concept of stable isotope labeling of
amino acids in cell culture (SILAC), which
uses cells grown in isotopically labeled
amino acids (typical 13C- and 15N-labeled
arginine, lysine, and/or leucine ) to
synthesize the “heavy” forms of proteins
that can be mixed with their “light”
counterparts before trypsinization and/or
peptide/protein fractionation (Figure 5).
Advantages of SILAC include accuracy
in quantitation and the ability to
simultaneously quantify and differentiate
two proteomes. This method is also well
suited to studying proteome-wide protein
synthesis and decay, and a “SuperSILAC”
mix, such as that generated from ARDS
secretions, can be used as a common
reference standard (49). This approach
could have general utility for airway
secretomics; however, SILAC techniques
usually require numerous passages with

Table 6. (Continued )

Program Website Description Reference

VANTED https://immersive-analytics.infotech.monash.
edu/vanted/

VANTED is a Java-based extendable network
visualization and analysis tool with focus on
applications in the life sciences.

117

It allows users to create and edit networks, as well as
mapping experimental data onto networks.
Experimental datasets can be visualized on network
elements as graphical charts to show time series
data or data of different treatments, as well as
environmental conditions in the context of the
underlying biological processes.

METABOX http://kwanjeeraw.github.io/metabox/ An R-based web applications for data processing,
statistical analysis, integrative visual exploration and
functional analysis with several approaches (such as
functional class scoring, overrepresentation analysis
and WordCloud generation).

118

Mummichog http://clinicalmetabolomics.org/init/default/
mummichog_manual

Mummichog is a Python program for analyzing data
from high-throughput, untargeted metabolomics. It
leverages metabolic networks to predict functional
activity directly from feature tables, bypassing
metabolite identification. The features include: (1)
computing significantly enriched metabolic
pathways; (2) identifying significant modules in the
metabolic network; (3) visualization of top networks
in web browser; (4) visualization that also plugs into
Cytoscape; (5) tentative annotations; and (6)
metabolic models for different species through
plugins

119

Definition of abbreviations: LC = liquid chromatography; MS =mass spectroscopy; MSEA =metabolite set enrichment analysis
*Tools such as XCMS and MetSign in Table I include data analysis and visualization options.
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media containing the heavy amino acids,
limiting its applicability to cells in culture.

Label-Free Quantitative Proteomics
Dr. Kesimer emphasized the utility of label-free
quantitation of lung secretions. In a typical
label-free proteomic experiment, samples are
normalized to total protein before
trypsinization, and are intensity normalized
during data analysis. He discussed the potential
pitfalls of this approach for comparing health
to disease (e.g., how large increases in mucin-
5B secretion by HBECs were compressed
when data were intensity normalized across all
samples). Urea has been long used as a
normalizing factor in protein quantitation of
BALF. It stands to reason that a similar
approach (normalization to an “unperturbed”
metabolite or protein) might improve
quantitative accuracy of HBEC secretomics.

Proteomic Approaches to
Cell Signaling
As is the case with epithelial cells, proteomic
evaluation of isolated myeloid cells has the
virtue of providing focused molecular
insights into physiologic events that occur
in vivo in the multicellular lung. In
particular, ex vivo culture of sentinel
immune cells, such as macrophages, allows
for study of time-resolved cell signaling
events induced by environmental stimuli,
such as bacterial LPS. Dr. Michael Fessler
(National Institute of Environmental
Health Sciences, NIH) discussed proteomic
approaches to cell signaling using primary
murine macrophages (50), primary human
neutrophils (51), and immortalized
macrophage cell lines (52, 53). Whereas
phosphoproteomic strategies partnered
with chemical inhibitors or RNA
interference can be used to map out kinase

cascades, subcellular fractionation and
immunoprecipitation can permit focused
insight into compartmentalization of
signaling events within the cell. SILAC has
been applied successfully to both primary
(e.g., bone marrow-derived) and
immortalized macrophages, and can be
used in multiple signaling applications,
including detecting changes in post-
translational modification, localization, and
interaction of signaling proteins. SILAC
has been particularly valuable in kinetic
studies (e.g., measurement of protein
turnover) and analysis of signaling events
(e.g., phosphorylation). In addition, label-
free approaches, such as spectral counting,
can be used in a semiquantitative manner
to monitor targeted signaling events
within the cell, and can also be used to
help validate specificity in pulldown
assays.

Table 7. Proteomic biomarker publications in acute respiratory distress syndrome, chronic obstructive pulmonary disease, and
idiopathic pulmonary fibrosis

Year Disease Proteomics Approach Biomarkers Reference

2004 ARDS 2D Gel with MALDI-TOF MS Surfactant protein A 9
2006 ARDS SELDI-TOF, 2D Gel with

MALDI-TOF MS
Apolipoprotein A1, S100 calcium-binding proteins A8 and A9 120

2006 ARDS Label-free LC-MS/MS IGFBP-3, IGF 121
2008 ARDS DIGE with MALDI MS 22 proteins, including S100A8/9, HSPG2, FTL 122
2013 ARDS iTRAQ label with MS/MS 5 apolipoproteins, complement factor H, haptoglobin,

serotransferrin, A1-antitrypsin, antichymotrypsin, CRP,
amyloid A, leucine-rich 2 glycoprotein

123

2013 ARDS 2D Gel with MALDI-TOF MS 27 proteins, including S100A8/9, IL1RA, g-actin 124
2014 ARDS iTRAQ label with MS/MS Plasminogen, factor 12, antithrombin III, ceruloplasmin,

S10049, thioredoxin
36

2016 ARDS iTRAQ label with MS/MS DMBT1 125
2005 COPD SELDI MS Neutrophil defensins 1 and 2, calgranulin A and B, salivary

proline-rich peptide, club cell secretory protein
126

2008 COPD 2D Gel with MALDI-TOF MS RAGE 127
2008 COPD SELDI-TOF Serum amyloid 128
2009 COPD 2D Gel with MALDI-TOF MS MMP-13, thioredoxin-like 2 129
2010 COPD 2D Gel with MALDI-TOF MS Apolipoprotein A1, lipocalin-1 37
2011 COPD 2D Gel with MALDI-TOF MS Hsp27, CyPA 130
2011 COPD DIGE with MALDI MS 2-macroglobulin, haptoglobin, ceruloplasmin, hemopexin 131
2013 COPD iTRAQ label with MS/MS Lactotransferrin, HMGB1, a-1 antichymotrypsin, cofilin-1 132
2014 COPD GeLC-MS/MS GRP78, soluble CD163, IL1AP and MST1 133
2014 COPD Label-free MS/MS 423 proteins, ADH1B, ALDH2, and ALDH3A1 38
2015 COPD Label-free MS/MS 203 proteins, mucin 5AC 134
2015 COPD Labeled MS/MS TIMP1, APOA1, C6orf58, BP1FB1 135
2008 IPF 2D Gel with MALDI-TOF MS Calgranulin B 136
2013 IPF 2D Gel with MALDI-TOF MS Stress-induced, antiapoptotic, and antifibrotic proteins 137
2013 IPF 2D Gel with MALDI-TOF MS Plastin 2, annexin A3, calcyclin 138
2014 IPF Data-independent MS/MS Osteopontin, MMP7, CXCL7, CCL18 55
2016 IPF 2D Gel with MALDI-TOF MS 22 unique proteins 139

Definition of abbreviations: 2D = two dimensional; ADH = antidiuretic hormone; ALDH = aldehyde dehydrogenase; APOA = apolipoprotein A; ARDS =
acute respiratory distress syndrome; BP1FB11 = bacterial/permeability-increasing fold-containing B1; C6orf58 = chromosome 6 open reading frame 58;
COPD=chronic obstructive pulmonary disease; CRP=C-reactive protein; CyPA=cyclophilin; DMBT1=deleted in malignant brain tumors 1; FTL= ferritin light
chain; GRP78=78 kDa glucose-regulated protein; HMGB1=high mobility group box 1 protein; Hsp=heat shock protein; HSPG=heparan sulfate proteoglycan;
IGF= insulin-like growth factor; IGFBP= insulin-like growth factor-binding protein; IPF= idiopathic pulmonary fibrosis; LC= liquid chromatography; MALDI-TOF=
matrix-assisted laser desorption/ionization–time of flight; MMP=matrix metalloproteinase; MS=mass spectroscopy; MST1=hepatocyte growth factor-like protein;
RAGE= receptor for advanced glycation endproducts; TIMP1= tissue inhibitor of metalloproteinases 1.
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Table 8. Resources for (lung-specific) proteomics database and repositories

Resource URL Description

BioGRID https://thebiogrid.org Repository of protein–protein interaction
(interactome) datasets

Human Protein Atlas http://www.proteinatlas.org Database of human protein expression with
immunohistochemistry and gene expression data
from normal lung parenchyma (140, 141).

Human Proteome Project https://hupo.org/human-proteome-project Information resources. International project
organized by the HUPO, recently published list of
organ system-specific proteins for targeted
proteomics (including lung) (142).

Lung Map http://www.lung-map.org/ Data from NIH-funded Molecular Atlas of Lung
Development program, including proteomes of
developing mouse lung (143, 144).

MaxQB http://maxqb.biochem.mpg.de/mxdb Database of studies from Max Plank Institute,
including an in-depth, time-resolved proteomic
analysis of the bleomycin model of pulmonary
fibrosis (145, 146).

Phosphomouse https://phosphomouse.hms.harvard.edu Protein and phosphopeptide data from mouse
tissue, including lung (147).

Proteomics DB https://www.proteomicsdb.org Database of large-scale proteome studies. Analysis
of human cells and tissues, including lung (148).

ProteomeXChange http://www.proteomexchange.org Catalog Searchable data from multiple proteomics
repositories, including Peptide Atlas and
MassIVE, with numerous airway cell datasets.

REPRINT https://reprint-apms.org/ Resource for Evaluation of Protein Interaction
Networks provides a database for the
contaminant repository.

General methods and protocols
Duke Proteomics and

Metabolomics Shared
Resource

https://genome.duke.edu/cores-and-services/
proteomics-and-metabolomics/protocols-
reagents

Methods for sample preparation, including tissue
lysis, affinity purification and proteolytic digestion

Max Planck Institute (Mann
Laboratory)

https://www.biochem.mpg.de/221814/Sample-
preparation

Protocols for filter aided sample preparation (FASP)
methods

UMN Proteomics Resource
and shared protocols

http://cbs.umn.edu/cmsp/protocols Protocols for sample preparation

UW Proteomics Resource http://proteomicsresource.washington.edu/
methods.php

Methods for sample preparation and data
acquisition

UMN Proteomics Resource
and shared protocols

http://cbs.umn.edu/cmsp/protocols Protocols for sample preparation

Open-source software
DIA-Umpire http://diaumpire.sourceforge.net/ Software for analysis of swath-type DIA data
Galaxy-P project https://usegalaxyp.org/ A multi-omics informatics platform for integrative

analysis of mass spec–based proteomics,
genomic and transcriptomic data.

MacCoss Laboratory https://sites.google.com/a/uw.edu/maccoss/
home/software

Numerous software tools, including PECAN (for
searching DIA data) and Percolator (for
determining peptide FDR from decoy database
searches)

MaxQuant http://www.biochem.mpg.de/5111795/maxquant Quantitative proteomics software package supports
all main labeling techniques as well as label free.

Motif-X http://motif-x.med.harvard.edu/ Online tool for generating consensus motifs from
proteomic datasets containing post-translationally
modified peptides

NIST Mass Spectrometry
Data Center

http://chemdata.nist.gov/ Repository of tandem mass spectrum libraries

Skyline https://skyline.ms Vendor-neutral software for targeted proteomics
PNNL Omics Software https://omics.pnl.gov/software Open-source proteomics software
Seattle Proteomics Tools http://tools.proteomecenter.org/software.php Software tools that form the basis for the TPP
STRING http://string-db.org/ Online tool for visualizing protein interaction

networks
Yates Laboratory http://fields.scripps.edu/yates/wp/?page_id=17 Proteomics software tools, including the search

engine Sequest

Definition of abbreviations: DIA = data-independent acquisition; FDR = false discovery rate; HUPO=Human Proteome Organization; NIH = National
Institutes of Health; TPP = trans-proteomic pipeline; UMN=University of Minnesota; UW=University of Washington.
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The application of LC-MS/MS for the
identification and quantitation of select
peptides/proteins (targeted proteomics) is
an alternative to immunoassay-based
protein quantitation (10, 54). Although
immunoassays may have greater sensitivity,
targeted proteomic assays use internal
standards to achieve high specificity, offer a
high degree of multiplexing, and enable
facile quantitation of post-translational
modifications. These advantages were
discussed in a presentation by Dr. Matt
Foster (Duke University Durham, NC),
which also served as an introduction to the
design and application of targeted
proteomic assays to airway cells and
biofluids. Dr. Foster has employed targeted
proteomic assays for the quantitation of
cytokines and chemokines in BALF (55),
and the quantitation of allelic variants and
isoforms of surfactant protein A (56).
Additional applications include quantitation
of genetic lineages of human metapneumovirus
from cell culture and nasal lavage specimens
(57). Targeted proteomics is also a powerful
tool for quantitation of post-translationally

modified peptides beyond phosphorylation
(e.g., small ubiquitin-like modifier (SUMO)
modification, methylation, acetylation,
ubiquitinylation, acylation, and oxidation) that
can now be measured by the thousands in
discovery-based proteomics studies. To this
end, he presented data on a targeted proteomic
assay for quantitation of newly discovered
phosphorylation sites in basal cell
cytokeratins (58). Targeted proteomic
assay development has been a major focus
of the NIH-funded Clinical Proteomic
Tumor Analysis Consortium (CPTAC)
(10), and this technique will likely have an
important future role in clinical diagnostic
and prognostic assays for lung diseases.

Summary Integration

This symposium focused on current
challenges in applying emerging
metabolomics and proteomics
methodologies to lung disease. Unlike
genetics and genomics, where advanced
sequencing technology allows independent
laboratories to achieve highly similar results,

metabolomics and proteomic profiling
remains challenging for several key reasons.
First, there are the inherent challenges to
metabolomics and proteomics, such as
identification and quantification of both
peptides and metabolites, along with “big
data” analyses that aggregate samples and
data across many laboratories and impair
the feasibility of systems biology data
integration from multiple sources. In
addition, there are lung-specific issues, such
as lack of uniform SOPs specifically for the
lung, leading to operator and protocol
variability with sample attainment. Working
to advocate for an NIH/NHLBI investment in
publicly available, well phenotyped biobanks
that include diverse sample types (e.g., plasma,
BALF, lung biopsies) would help standardize
proteomic and metabolomic methods and
further the field of biomarker development in
lung diseases. This emerged as a major goal of
this symposium.

Although there may be challenges to
standardize large population metabolomics
and proteomics analyses across different
platforms, the potential benefit for

Table 9. Overview of quantitation strategies for shotgun proteomic analyses

Analysis Type Quantification
Type

Quantification
Method

Description MS1- or
MS2-Based?

Reference

Discovery-based
proteomics

Labeled Isobaric (iTRAQ/TMT) Tryptic peptides from <10 samples
are labeled with isobaric tags
containing reporter ions of differing
molecular weight. Labeled samples
are combined before LC-MS/MS.

MS2 (reporter ion) 36

Isotopic (SILAC) Cells are grown in media containing
light or heavy (13C,15N-labeled)
amino acids. Two states are mixed
before trypsin digestion and
LC-MS/MS.

MS1 (heavy/
light ratio)

49

Label free Spectral counting Estimation of protein abundance
based on number of MS/MS
sequence attempts are performed
on a peptide/protein.

MS1/MS2 43

Ion abundance or
Ion current

AUC analysis used to quantify the
expression of peptides/protein
identified by LC-MS/MS. MS/MS
performed on topN most abundant
ions (i.e., data-dependent acquisition).
Can use alignment across samples to
reduce missing data.

MS1 (precursor
intensity)

149

DIA (e.g., DIA,
SWATH, MSE)

AUC analysis of peptides/proteins
identified by matching to spectral
library. MS/MS performed on all
ions within in a defined mass range.

MS1 or MS2 46

Targeted
proteomics

Relative to
internal
standard

MRM/SRM/PRM Ratio of AUC for native versus SIL
internal standard. Can be applied to
large panels or to a few select targets.

MS2 55

Definition of abbreviations: AUC = area under the curve; DIA = data-independent acquisition; iTRAQ = isobaric tags for relative and absolute quantification;
LC = liquid chromatography; MRM=multiple reaction monitoring; MS =mass spectroscopy; PRM= parallel reaction monitoring; SIL = stable isotope-
labeled; SILAC = stable isotope labeling of amino acids in cell culture; SRM= selected reaction monitoring; TMT = tandem mass tags.

AMERICAN THORACIC SOCIETY DOCUMENTS

American Thoracic Society Documents 1737



overcoming these challenges can be
illustrated through more focused
approaches on single platforms by
individual laboratories. For example,
Dr. Michael Snyder (Stanford University,
Stanford, CA) highlighted his own
experience using a longitudinal integrative
personal omics profile (iPOP), examining
genomic, transcriptomic, proteomic,
metabolomic, and autoantibody profiles
from a single individual over a 14-month
period (59). This strategy revealed how
iPOP can detect prediabetes as well as

routine viral infections. This type of
approach in which proteomics and
metabolomics are integrated with other
“omics” at the individual level is technically
feasible and is an outstanding example of
precision medicine; however, there remain
cost and bioinformatic challenges that need
to be overcome before the iPOP becomes
routine in clinical practice.

In conclusion, the symposium
demonstrated how proteomics and
metabolomics can be used to better
understand and track lung diseases, but there

remain important necessary steps to bring
these fields into routine clinical practice. n

This official Workshop Report was prepared by an
ad hoc subcommittee of the American Thoracic
Society Workgroup on Metabolomics and
Proteomics.

Members of the Subcommittee are as follows:
RUSSELL P. BOWLER, M.D., PH.D. (Co-Chair)
CHRIS H. WENDT, M.D. (Co-Chair)
MICHAEL B. FESSLER, M.D.
MATTHEW W. FOSTER, PH.D.
RACHEL S. KELLY, M.P.H., Ph.D.
JESSICA LASKY-SU, Sc.D.

In
te

ns
ity

m/z

MS1 Spectrum

*

*

*

Time

In
te

ns
ity

TIC Chromatogram

DDA

Fragment

m/z

y10
y9

y7
y8

In
te

ns
ity

m/z

y7
y8

y6
y5

In
te

ns
ity

Quantify

DIA

Match

Quantify

Match

In
te

ns
ity

m/z

MS2 Spectrum (All Ions, Δm/z)

*

*

*
*

A

B C

D

E

F

Time

In
te

ns
ity

MS1 XIC Chromatogram

Time

In
te

ns
ity

MS2 XIC Chromatogram

m/z

y9
y8

y7

y6

In
te

ns
ity

MS/MS Spectra

Figure 4. Summary of two common proteomic data acquisition methods. In a typical unbiased proteomic analysis, tryptic peptides are separated using liquid
chromatography and introduced into the mass spectrometer using electrospray ionization. The sum intensity of detected peptides is often visualized as total
ion current over time, as in A. (B) In a typical cycle of a data-dependent analysis (DDA), a “full scan” of all precursor (MS1) ions present is performed followed by (C)
tandem mass spectrometry (MS/MS) analysis of the topN (e.g., top3; starred peaks) most abundant ions. The MS/MS spectra are used for database searching to
identify the corresponding peptides. (D) Finally, identified peptides are quantified based on the area under the curve (AUC) of the MS1 intensity. (E) In a data-
independent analysis (DIA), all ions within a selected mass range are subjected to MS/MS fragmentation. (F) Quantitation is performed by AUC of the fragment ions
(MS2) that belong to a particular peptide. m/z = mass-to-charge ratio; MS1=mass spectrometry analyzer 1; MS2=mass spectrometry analyzer 2; TIC= total
ion chromatogram; XIC= extracted ion chromatogram.
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Metabolomics and its application to acute lung diseases. Front
Immunol 2016;7:44.

7 Rennard SI, Basset G, Lecossier D, O’Donnell KM, Pinkston P, Martin PG,
Crystal RG. Estimation of volume of epithelial lining fluid recovered by
lavage using urea as marker of dilution. J Appl Physiol 1985;1986:
532–538.

8 van der Vliet A, O’Neill CA, Cross CE, Koostra JM, Volz WG, Halliwell B,
Louie S. Determination of low-molecular-mass antioxidant
concentrations in human respiratory tract lining fluids. Am J Physiol
1999;276:L289–L296.

9 Bowler RP, Duda B, Chan ED, Enghild JJ, Ware LB, Matthay MA,
Duncan MW. Proteomic analysis of pulmonary edema fluid and
plasma in patients with acute lung injury. Am J Physiol Lung Cell
Mol Physiol 2004;286:L1095–L1104.

10 Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B,
Deutsch EW, Grant RP, Hoofnagle AN, Hüttenhain R, Koomen JM,
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