IMPACT OF AIR POLLUTION ON LUNG DISEASE IN THE SOUTH ASIAN SUBCONTINENT

Dr Sundeep Salvi MD, DNB, PhD(UK), FCCP(USA)
Director
Chest Research Foundation, Pune, INDIA
World’s worst lungs are in India

FVC and FEV1 values are 30% lower than the Europeans/North Americans

- Ethnic factors
- Nutritional factors
- Quality of air we breathe

(ATS Abstract, May 2011)
GLOBAL MORTALITY DUE TO CHRONIC RESPIRATORY DISEASES

Mortality due to Chronic Respiratory Diseases, Global Health Observatory Data Repository, World Health Organisation (WHO), viewed 4th November, 2011
ESTIMATED MORBIDITY FOR NON COMMUNICABLE DISEASES IN INDIA

- Cancer: 0.6 million
- IHD: 25 million
- Stroke: 1 million
- Diabetes: 28 million
- Chronic respiratory disease: 65 million
- Asthma: (57.2 million)
- COPD: (45 million)

(Nongkynrih B et al, JAPI 2004 Feb; 52: 118-123
Murthy, NCMH Background Papers, GOI, 2005)
ESTIMATED MORTALITY FOR NON COMMUNICABLE DISEASES IN INDIA

(Nongkynrih B et al, JAPI 2004 Feb; 52: 118-123)

WHO, 2002 data
LEADING CAUSES OF MORTALITY IN RURAL INDIA - 1994

(Dec Schüler et al., The Internet J Epidemiol 2005: 2(2): DOI: 10.5580/3ed)
TOP 10 CAUSES OF DEATH IN MAHARASHTRA, INDIA

(2008)

17% smokers in Maharashtra

COPD + Asthma
Cardiac Arrest
Stroke
IHD
Accidents
Premature/Low birth wt
Liver Cirrhosis
CCF
DM
Suicide

(Health Status Maharashtra 2009: State Health Systems Resource Centre; 2010, Pg 20-21.)
GLOBAL ASTHMA MORTALITY

(http://www.worldmapper.org/display_extra.php?selected=459)
CAUSES OF DEATHS IN SOUTH-EAST ASIAN REGION

From: The Global Burden of Disease, WHO 2008
WHAT AILS INDIA?

13,225 doctors across India
- General Physicians
- General Practitioners
- Pediatricians

888 cities and towns across India

1st February 2011

2,04,912 patients
MOST COMMON SYMPTOMS FOR WHICH A PATIENT VISITS A DOCTOR (NON-SPECIALIST) IN INDIA

Prevalence of Different symptoms in Indian Population

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>36%</td>
</tr>
<tr>
<td>Headache/Bodyache</td>
<td>19%</td>
</tr>
<tr>
<td>Loss of Appetite</td>
<td>10%</td>
</tr>
<tr>
<td>Accident/Jury</td>
<td>3%</td>
</tr>
<tr>
<td>Respiratory</td>
<td>51%</td>
</tr>
<tr>
<td>Digestive</td>
<td>25%</td>
</tr>
<tr>
<td>Circulatory</td>
<td>13%</td>
</tr>
<tr>
<td>Skin</td>
<td>9%</td>
</tr>
<tr>
<td>Endocrine</td>
<td>7%</td>
</tr>
<tr>
<td>Blood</td>
<td>6%</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>6%</td>
</tr>
<tr>
<td>Others</td>
<td>18%</td>
</tr>
</tbody>
</table>
Pune city

>20,000 children

2003 – 2.9%

2008 – 5.4%

‘Child asthma cases have doubled in 5 yrs’

TIMES NEWS NETWORK

Pune: The number of children suffering from asthma in the city has almost doubled in the last five years, a study carried out by the Chest Research Foundation (CRF) here has revealed.

The study, revealed on the eve of World Asthma Day, was conducted in 17 randomly selected schools across the city on 3,909 children. Interestingly, asthma was found to be more prevalent amongst students in private schools (5.9 per cent) compared to their counterparts in municipal schools (4.7 per cent).

“The first study, completed in 2003, had shown that asthma prevailed amongst 2.9 per cent of schoolchildren in Pune. The study was repeated in 2008-2009 using the same tools and methods on the same population. We have found that childhood asthma is now prevalent amongst 5.4 per cent, a jump of over 80 per cent,” said chest physician Sundeep Salvi, who is the director of CRF.

Risk factors

- Children born through Caesarean section
- Those born in homes that use biomass fuel for cooking
- Motor vehicle pollution
- Children who receive mixed feeds during the first six months
- Children with family history of asthma

(Times of India, 5th May 2009)
ECONOMIC BURDEN OF ASTHMA AND COPD IN INDIA (Estimated figures for 2010)

US $ 2.5 billion

ASTHMA

US $ 7.5 billion

COPD

(Murthy KJR et al, NCMH Background Papers, 2005)
Remote sensing of air pollution from space

(Van Donkelaar et al. Environ Health Perspect 2010; 118(6): 847 DOI: 10.1289/ehp.0901623)

(Indian Inst. of Tropical Meterology)
DO POLLUTANTS INHALED BY THE MOTHER ENTER INTO THE GROWING FETUS?

10 newborn babies randomly selected by Red Cross from USA
Cord blood collected and sent for analysis for different pollutants

287 pollutants, chemicals, pesticides identified in the umbilical cord blood

(https://www.ewg.org/reports/bodyburden2/execsumm.php)
Residential Proximity to main roads during Pregnancy and Risk of Asthma

Japanese Birth Cohort Study, 756 pregnant mothers,
Babies followed for 2 yrs after birth

<50 mts versus >200 mts

Doctor diagnosed asthma: 4.0 (1.4-11.2)
Doctor diagnosed eczema: 2.3 (1.1-4.6)

Maternal exposure to vehicular pollutants during pregnancy is strongly associated with early childhood asthma

(Miyake Y et al, Pediatr Allergy Immunol 2010; 21: 22-28)
Current wheeze vs Truck traffic on street of residence
(n = 513,087; 98 countries, 238 centers) ISAAC III Study

Table 6. Adjusted* association between self-reported truck traffic on the street of residence and current wheeze in 6- to 7-year-old children participating in the ISAAC phase 3 study in different parts of the world.

- Living in homes close to busy roads (<50m) is significantly associated with increased asthma risk in children

(Brunekreef B et al, Environ Health Perspect 2009; 117: 1791-1798)
Traffic density around school and prevalence of Asthma amongst school children

(n = 6550; Bangalore, India)

(Paramesh H. Indian J Paed 2002; 69(4): 309-312)
Diesel exhaust particles increase allergenicity by up to 50-fold

Pollen become more allergenic when these trees grow in an urban environment

(Knox et al, Clin Exp Allergy 1997)
(Bryce M et al., Int Arch Allergy Immunol 2010; 151: 45-65)
Diesel exhaust particles

Carbon core
Adsorbed hydrocarbons
Soluble organic fraction
Sulphates
Vapour phase hydrocarbons
Cadmium
Arsenic
DNA methylation

? Increase in allergic diseases that may last for several generations

(Baccarelli A et al., Am J Respir Crit Care Med 2009; 179: 572-578)
WHICH MODE OF TRANSPORT EXPOSES YOU TO MORE AIR POLLUTANTS?

Autorickshaw

Station to Kothrud
Deccan to Hadapsar

Bus

Motor cycle

(Chest Research Foundation, 2007)
Difference between CO levels for 3 different transportation modes from station - Kothrud

(Chest Research Foundation, 2007)
Mean difference in SO2 levels for 3 different transportation mode from Station - Kothrud

(Chest Research Foundation, 2007)
MEAN CHANGES IN SO2 LEVELS (ppm)

<table>
<thead>
<tr>
<th></th>
<th>Before Diwali</th>
<th>During Diwali</th>
<th>After Diwali</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO2 levels (ppm)</td>
<td>-1</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Ambient SO2 levels reached values **200 times** above the safety limits recommended by WHO.
Prevalence of Respiratory Symptoms during the Diwali Festival

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Pre-existing Prevalence (%)</th>
<th>New symptoms Prevalence (%)</th>
<th>Total Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cough</td>
<td>4.2↑</td>
<td>26.3</td>
<td>31.2</td>
</tr>
<tr>
<td>Breathlessness</td>
<td>2.5↑</td>
<td>10.8</td>
<td>13.3</td>
</tr>
<tr>
<td>Wheeze</td>
<td>1.8↑</td>
<td>4.3</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Irritation in Eyes, Runny Nose, Allergic Symptoms, Itchy Skin

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irritation in Eyes</td>
<td>26.1%</td>
</tr>
<tr>
<td>Runny Nose</td>
<td>9%</td>
</tr>
<tr>
<td>Allergic Symptoms</td>
<td>5.7%</td>
</tr>
<tr>
<td>Itchy Skin</td>
<td>4.1%</td>
</tr>
</tbody>
</table>

(Chest Research Foundation, India, 2008)
PREVALENCE OF COPD AMONGST URBAN SLUM DWELLERS OF PUNE CITY, INDIA

(n = 12,050; Questionnaire)

Prevalence of COPD: 7.2%
56% of COPDs were never smokers

COPD in Kerosene users vs LPG users
OR: 2.51 (CI; 1.1 - 5.7)

(Chest Research Foundation, Pune, India, 2007)
Prevalence of COPD: 5.1% (M:6.5%, F:3.4%)

85% of COPD patients were never smokers

Risk Factors associated with COPD:
• Tobacco smoking
• Increasing age
• Male gender
• Use of biomass fuel for cooking

(Salvi S et al, Manuscript in preparation)
Prevalence of COPD near Highways

\[R^2 = 0.946 \]
\[p < 0.04 \]

Proximity to highway

\[R^2 = 0.94 \]

Biomass fuel:

OR 1.46 (1.06 – 2.0)

(Muralidharan V et al, Manuscript in preparation)
COPD RISK FACTORS

Odds Ratio:
- Smoker developing COPD: 2.5
- Biomass smoke exposure and COPD: 2.5
Chronic obstructive pulmonary disease in non-smokers

Sundeep S Sahi, Peter J Barnes

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Tobacco smoking is established as a major risk factor, but emerging evidence suggests that other risk factors are important, especially in developing countries. An estimated 25–45% of patients with COPD have never smoked; the burden of non-smoking COPD is therefore much higher than previously believed. About 3 billion people, half the worldwide population, are exposed to smoke from biomass fuel compared with 1.01 billion people who smoke tobacco, which suggests that exposure to biomass smoke might be the biggest risk factor for COPD globally. We review the evidence for the association of COPD with biomass fuel, occupational exposure to dusts and gases, history of pulmonary tuberculosis, chronic asthma, respiratory-tract infections during childhood, outdoor air pollution, and poor socioeconomic status.

Introduction

Chronic obstructive pulmonary disease (COPD) is the reported physician diagnosis, which was similar to the prevalence of chronic cough, phlegm, or wheezing.

Is Exposure to Biomass Smoke the Biggest Risk Factor for COPD Globally?

About 1.5 million years ago, our ancestors Homo erectus learned to light fire from wood to keep wild animals away. Over the years, the human race has used several biologic sources of fuel to produce fire, not only for getting rid of enemies but also for cooking and heating. These sources have included wood, charcoal, dried twigs and grass, crop residues, and animal dung cakes, which collectively are inhalable size range. A significant number of these biomass smoke constituents are known to be toxic or have irritant effects on the respiratory tract and include particulate matter that are <10 microns in aerodynamic diameter (PM_{10}), carbon monoxide (CO), nitrogen dioxide, sulfur dioxide, aldehydes (eg, formaldehyde), polycyclic aromatic hydrocarbons (eg, benzpyrene), volatile organic compounds, chlorinated dioxins, and free radicals. Among these, PM_{10} has the most significant adverse health impacts. In homes that use biomass fuels, the mean 24-h PM_{10} levels have been shown to reach 300 to 3,000 μg/m³ and sometimes can be as high as 30,000 μg/m³.
TOXICOLOGY OF BIOMASS SMOKE PARTICLES
(Animal Exposure Studies)

Collected biomass smoke particles from rural home in India
(Wood, Animal Dung)

(Chest Research Foundation, India and Johns Hopkins University, USA)

Cyclone Particle Collector

Intra-tracheal instillation in mice (0, 20, 50, 250, 500 mcg)
CELLULAR AND MEDIATOR INFLAMMATORY RESPONSES

(Wood Smoke versus Animal Dung Smoke)

(Sussan T et al, Manuscript submitted, 2013)
MOSQUITO COIL

Mosquito Coil
0.3 – 0.4% Pyrethrin (insecticide)
99.6% - Binders, Fillers

Burning one mosquito coil releases the same amount of PM$_{2.5}$ mass as that of burning $75-137$ cigarettes.

The emission of formaldehyde can be as high as that released from burning 51 cigarettes

(Liu W et al, Environ Health Perspect 2003; 111: 1454-1460)
PAHs in Cigarettes vs Mosquito coil smoke

<table>
<thead>
<tr>
<th>Polyaromatic hydrocarbons</th>
<th>Cigarette ((x \times 10^{-6}))</th>
<th>Mosquito Coil ((10^{-6}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo[a]pyrene</td>
<td>170</td>
<td>16</td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Benzo[k]fluoranthene</td>
<td>110</td>
<td>50</td>
</tr>
<tr>
<td>Pyrene</td>
<td>21</td>
<td>60</td>
</tr>
<tr>
<td>Dibenz[a,h]anthracene</td>
<td>3</td>
<td>110</td>
</tr>
<tr>
<td>Chrysene</td>
<td>0.5</td>
<td>ND</td>
</tr>
</tbody>
</table>
INCENSE BURNING AND ASTHMA

Aromatic woods, herbs, flowers, essential oils, perfumes
PAH, Benzene, CO, Isoprene

Oman, Muscat
2441 children 10 yrs
40% of asthmatic children reported worsening of symptoms due to incense burning

Taipei, Taiwan
3764 children, 10 yrs
Incense burning at home was associated with a significantly increased risk of asthma
Association was strongest in those who had a GSTT1 null genotype

SMOKE PARTICLES FROM DHOOP AGARBATTIS
OBSTRUCTIVE AIRWAYS DISEASE IN PUJARIS

50 Pujaris from 35 temples in Pune city

Spirometry:
25% showed presence of Obstructive Airways Disease
ANTIOXIDANT PROPERTIES OF THE EPITHELIAL LINING FLUID

Ozone, NO2, Diesel exhaust particles

Reactive oxygen species

Vit C GSH α-tocopherol UA CO

Alveolar macrophages

DEFENSE LINE

Blood
DOES N-ACETYLCYSTEINE AS AN ANTIOXIDANT REDUCE LUNG OXIDATIVE STRESS AND IMPROVE LUNG FUNCTION IN PMT BUS DRIVERS?

PMT Bus Drivers (n = 72)

Placebo

NAC 600mg/day

NAC 1200mg/day

X 4 weeks

(Chest Research Foundation, B.J. Medical College)
4 week treatment of NAC/Placebo on lung oxidative stress in PMT bus drivers

(Chest Research Foundation, B.J. Medical College)
4 week treatment of NAC/Placebo on lung function changes in PMT bus drivers

(Chest Research Foundation, B.J. Medical College)
THE NEED

RESPIRATORY REVOLUTION

• Improve Quality of Research in Respiratory Medicine

• Improve Quality of Care to patients with Respiratory Diseases

• Improve Quality of Undergraduate and Postgraduate Medical Education in Respiratory Medicine

Good quality doctors Good quality researchers Good quality educators
Introducing India’s First Respiratory Research Network

RESPIRATORY RESEARCH NETWORK OF INDIA

Unfortunately, the contribution made by India to new knowledge generation for world medical literature is meagrely 0.5%. Despite the enormous burden of both communicable and non-communicable diseases and demographics. Collectively it has extensive knowledge and experience in respiratory research and close links with centres of excellence and key opinion leaders in India and other countries. RRNI adds value...
SPIROMETRY SIMPLIFIED
Web-based E-learning module

Welcome to CRF's virtual classroom. New user: Register.
Existing user: Log in.

Home

Spirometry Simplified
You probably know that spirometry is the only way to assess the health of the airways. What you may not know is that you are in the minority. Many among us have not had a chance to study about spirometry, its correct use and interpretation. The result is that obstructive airways diseases continue to haunt the lives of millions and claim an increasing number of lives.

http://www.crflearning.org
PURVIEW
Practical Updates for Respiratory PGs via the Web

1. Basics of Lung Physiology and How to Select a Dissertation Topic
2. COPD – I
3. Tuberculosis Update 2012
4. COPD – II
5. Radiology in Chest Medicine
6. Asthma – Beyond Prescription
7. Understanding Spirometry
8. Diffuse Parenchymal Lung Disease
9. ILD in Systemic Vasculitis and Autoimmune Vasculitis
10. Hospital Acquired Pneumonias

11. Pleural Diseases

June 2013

(http://www.crfindia.com)
India Needs a National COPD Prevention and Control Programme

Sundeept Salvi, Anurag Agrawal

Chronic Obstructive Pulmonary Disease (COPD) kills more than 3 million people every year, making it the 4th largest cause of death in the world. It has been estimated that by the year 2030, COPD will become the third biggest cause of death. According to the World Health Organisation, COPD kills more people than HIV-AIDS, Malaria and Tuberculosis all put together in the South East Asian region. What is more worrying is the fact that mortality rates due to COPD are anticipated to increase by over 100% over the next 2 decades. Based on a million prevalence of COPD in India and most of these have used a respiratory health questionnaire and presence of symptoms to define the presence of COPD. Dr Jindal SK from the Postgraduate Institute of Medical Education and Research in Chandigarh has given an overview of the burden of COPD in India in Chapter 2, and has highlighted the growing prevalence and epidemic proportion of COPD in India. There seems to be a wide discrepancy in the prevalence of COPD across different studies, ranging from 3.5 to 7.7% in men and 1.6 to 6.8% in women.

(Salvi S, Agrawal A, JAPI 2012 Feb; 60: 5-7)
2-day Conference

10-12 overseas speakers
10-12 Indian speakers

✧ Develop ideas that will guide future research and funding support in the area of interventional and preventive strategies for COPD
✧ Bring together clinicians, researchers and stakeholders from all parts of the world at a common platform in India
✧ Giving an identity to COPD in India
✧ Phenotyping and management of COPD
✧ Translation of basic research to develop novel therapies

Nationwide competition to give an Indian identity to COPD – PG students
THANK YOU

ssalvi@crfindia.com

www.crfindia.com